На правах рукописи

Носова Наталья Максимовна

СТРУКТУРА И ФИЗИЧЕСКИЕ СВОЙСТВА ДИХАЛЬКОГЕНИДОВ НИОБИЯ И ТАНТАЛА, ИНТЕРКАЛИРОВАННЫХ АТОМАМИ ХРОМА И ЖЕЛЕЗА

1.3.8. Физика конденсированного состояния

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в лаборатории рентгеновской аттестации веществ и материалов кафедры физики конденсированного состояния и наноразмерных систем Института естественных наук и математики, Уральского Федерального Университета имени первого Президента России Б.Н. Ельцина (УрФУ).

Научный руководитель:

Баранов Николай Викторович, доктор физикоматематических наук, профессор, Институт физики металлов имени М.Н. Михеева УрО РАН, г. Екатеринбург.

Официальные оппоненты:

Биккулова Нурия Нагимьяновна, доктор физикоматематических наук, профессор кафедры общей и теоретической физики Стерлитамакского филиала Башкирского госуниверситета (г. Стерлитамак);

Садовников Станислав Игоревич, кандидат химических наук, старший научный сотрудник лаборатории нестехиометрических соединений Института химии твёрдого тела Уральского отделения Российской академии наук (г. Екатеринбург).

Ведущая организация:

Казанский физико-технический институт им. Е.К. Завойского - обособленное структурное подразделение Федерального государственного бюджетного учреждения науки «Федеральный исследовательский центр «Казанский научный центр Российской академии наук» (г. Казань).

Защита состоится 1 ноября 2024 г. в 11:00 на заседании диссертационного совета 24.1.133.01 на базе ФБГУН Института физики металлов имени М.Н. Михеева Уральского отделения РАН (ИФМ УрО РАН) по адресу: 620108, г. Екатеринбург, ул. С. Ковалевской, 18.

С диссертацией можно ознакомиться в библиотеке ИФМ УрО РАН и на сайте Института https://www.imp.uran.ru/?q=ru/NosovaNM.

Автореферат разослан			2024 г.
----------------------	---------	--	---------

Ученый секретарь диссертационного совета, доктор физико-математических наук Чарикова Татьяна Борисовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень ее разработанности. Дихалькогениды переходных металлов (ДПМ) с формулой TCh_2 (где T – атом переходного металла группы IV – VIII, а *Ch* – атом халькогена) обладают уникальным кристаллохимическим строением. Уникальность ДПМ связана с квазидвумерностью их кристаллической структуры из-за существования в них «Ван-дер-Ваальсовой щели» между трехслойными блоками («сэндвичами») Ch-T-Ch, в которых между атомами металла и халькогена действует ионно-ковалентная связь. Такое строение открывает широкие возможности для модификации соединений. Слабые взаимодействия между Сh-T-Сh сэндвичами позволяют путем расслаивания кристаллов получать монослои ДПМ толщиной в один параметр решетки, которые проявляют уникальные оптические, электрические, фотоэлектрические и каталитические свойства, зачастую отличающиеся от массивных ДПМ [1, 2]. В то же время посредством внедрения (интеркалирования) атомов различных элементов или молекул в Ван-дер-Ваальсову щель становится возможным получение интеркалированных систем, отличающихся по структуре и физическим свойствам от исходных матриц-соединений. Физические свойства таких материалов находятся в непосредственной зависимости от концентрации внедренных атомов и характера их взаимодействия между собой и с атомами соединения-матрицы. Полученные соединения относят к сильно коррелированным системам [3], в которых связь между магнитной и электронной подсистемами приводит к появлению специфических физических свойств. На современном этапе актуальность синтеза и исследования такого рода соединений подтверждается непрерывно растущим числом посвященных им публикаций, в том числе касающихся их возможного применения. В последние несколько десятилетий были исследованы многие ДПМ, в том числе, такие, как TaS₂, NbSe₂ и TiSe₂, обладающие необычными физическими свойствами [4], такими как волна зарядовой плотности (ВЗП) в 1T-TaS₂ [5] и сверхпроводимость (СП) в 2H-NbSe₂ [6]. Высокотемпературные фазовые переходы в состояние с ВЗП представляют интерес для функциональных приложений в высокопроизводительных электронных устройствах [7]. Различные физические свойства ДПМ во многом зависят от их кристаллической и электронной структуры.

Несмотря на значительный прогресс, достигнутый в последние годы в области синтеза и исследования ДПМ, многие вопросы остаются до сих пор не решенными. При интеркалации атомов ванадия, железа, хрома, марганца, никеля и кобальта в диселенид ниобия или диселенид тантала с концентрацией ¼ и ⅓, образуются сверхструктуры с упорядочением интеркалированных атомов в слоях между Ch-T-Ch сэндвичами типа 2×2 или $\sqrt{3} \times \sqrt{3}$, соответственно [8]. Наличие не полностью заполненных 3d электронных оболочек и локализованных магнитных моментов интеркалированных атомов приводит к формированию

разного типа магнитных состояний от парамагнетизма до сложных магнитных структур. При этом свойства соединений проявляют зависимость не только от сорта и концентрации внедренных атомов, но и от химического состава и политипа соединения-матрицы. В частности, установлено, что в соединении $Cr_{0.33}NbS_2$ реализуется индуцированный полем фазовый переход от хиральной гелимагнитной структуры в коллинеарное ферромагнитное состояние через образование хиральной солитонной решетки с управляемыми параметрами, что может представлять интерес для применения в устройствах спинтроники [9]. В то же время исследования соединения $Cr_{0.33}NbSe_2$ на основе диселенида ниобия не выявили существования гелимагнитных структур [10], а данные систематического исследования влияния интеркалации атомов хрома в структуру 2H-NbSe $_2$ в широкой области концентраций отсутствуют, также, как и в структуру матрицы другой модификации, в частности, 4H-NbSe $_2$. Не было выяснено, какое влияние интеркалация хрома оказывает на свойства дителлурида ниобия. Учитывая, что физические свойства некоторых соединений TCh_2 , в частности диселенида ниобия, существенно изменяются при гидрировании, открытым остается вопрос о влиянии гидрирования на свойства интеркалированных соединений, например, соединений типа $Cr_x NbCh_2$.

В последние годы большое внимание привлекали необычные свойства дисульфида тантала, интеркалированного атомами железа. В то время, как исходное соединение 2H-TaS2 обладает фазовыми переходами в состояние с ВЗП и в сверхпроводящее состояние [11], интеркалация атомов Fe между сэндвичами S-Ta-S приводит к появлению в Fe_xTaS2 ферромагнитного состояния при $x \sim 0.25$ с экстремально высокой коэрцитивной силой ($H_{\rm C} \sim 27 - 70~{\rm K}$) и огромной магнитокристаллической анизотропией (поле анизотропии $H_{\rm A} \sim 600~{\rm K}$) при низких температурах [12]. Однако в литературе существует большой разброс данных о свойствах соединений близкого состава; так, по данным разных авторов значение температуры Кюри $T_{\rm C}$ в системе Fe_xTaS2 с содержанием железа $0.25 \le x < 0.29$ варьируется от 70 до 160 К. Отмечается также, что магнитные свойства этих соединений существенно зависят от способа приготовления образцов и термообработки. Причины такого поведения прежде не обсуждались и пока не ясны.

Таким образом, несмотря на значительное число экспериментальных и теоретических работ по системам M_xTCh_2 (где T – атом переходного металла группы IV–VIII, а Ch – атом халькогена, M – интеркалированные атомы, обладающие магнитным моментом), существуют качественные и количественные расхождения в физических свойствах и характеристиках соединений, имеющиеся работы зачастую носят фрагментарный характер, что не позволяет создать целостную картину формирования свойств соединений M_xTCh_2 .

Целью настоящей работы являлось определение роли интеркалированных атомов хрома и железа в изменениях структуры и физических свойств слоистых соединений на основе дихалькогенидов ниобия и тантала, и их гидридов, а также установление влияния сорта халькогена в исходном соединении-матрице на формирование физических свойств железо- и хромсодержащих соединений типа M_xTCh_2 .

Для достижения поставленной цели в работе решались следующие задачи:

- 1. Провести синтез дихалькогенидов ниобия и тантала с общей формулой TCh_2 (T = Nb, Ta; Ch = S, Se, Te), в том числе, и с замещением одного халькогена другим.
- 2. Выполнить синтез соединений $M_{\rm x}TCh_2$, интеркалированных атомами 3d- металлов $(M={\rm Cr},{\rm Fe})$ в широком концентрационном диапазоне.
- 3. Провести рентгенографическую аттестацию синтезированных образцов, установить закономерности изменения структуры при замещениях.
 - 4. Изучить кинетические и тепловые свойства синтезированных соединений.
- 5. Исследовать магнитное состояние полученных соединений при помощи измерений магнитной восприимчивости и намагниченности в широком интервале температур и магнитных полей, выявить закономерности в поведении основных магнитных характеристик при интеркалации и при замещениях.

В качестве **объектов исследования** в настоящей работе выбраны поликристаллические образцы интеркалатных материалов на основе дихалькогенидов ниобия и тантала M_xTCh_2 (M = Cr, Fe; T = Ta, Nb; Ch = S, Se, Te) и гидриды соединений Cr_xNbSe_2 , синтезированные в Институте естественных наук и математики Уральского федерального университета имени первого Президента России Б.Н. Ельцина (УрФУ).

Предметом исследования являются кристаллическая структура и физические свойства поликристаллических образцов, полученных в результате интеркалации и замещения по катионной или анионной подрешетке.

Научную новизну работы определяют следующие результаты:

- 1. В результате комплексного исследования соединений Cr_xNbSe_2 , интеркалированных атомами Cr до x=0.5 различными методами, включая ядерный магнитный резонанс (ЯМР) на ядрах ^{53}Cr , показано, что валентное состояние атомов хрома близко к Cr^{4+} . Выявлено уменьшение среднего магнитного момента на атом Cr в насыщении при увеличении содержания хрома выше x=0.33, что объясняется появлением магнитного момента на атомах Cr0 с противоположной ориентацией из-за перераспределения электронной плотности между Cr0 с Cr0 с Cr1 интеркалации.
- 2. Обнаружено, что температурная зависимость магнитной восприимчивости соединений Cr_xNbSe_2 с содержанием хрома $0.33 \le x \le 0.45$ не подчиняется закону Кюри-Вейса в широкой

области температур выше температуры Кюри. Такое поведение восприимчивости обусловлено существованием областей (кластеров) ближнего магнитного порядка, так называемой фазы Гриффитса в номинально парамагнитном состоянии.

- 3. Установлено, что замещение в анионной подрешетке S на Se в $Fe_{0.25}TaS_{2-y}Se_y$ сопровождается снижением температуры магнитного упорядочения с $T \sim 120$ K при y=0 до $T \sim 36$ K при y=2, но сохранением высококоэрцитивного ферромагнитного состояния для всех составов.
- 4. Выявлена сильная зависимость физических свойств интеркалированных соединений на основе дихалькогенидов ниобия и тантала от условий термообработки и охлаждения из-за перераспределения атомов разного сорта и вакансий в кристаллической решетке.
- 5. Показана возможность гидрирования интеркалированных атомами хрома образцов H_y Cr $_x$ NbSe $_2$ при невысокой концентрации интеркалированных атомов (x = 0.1). Обнаружено, что гидрирование повышает температуру перехода парамагнетик спиновое стекло в соединении $Cr_{0.1}$ NbSe $_2$ в 2 раза.

Теоретическая и практическая значимость работы. Полученные в настоящей работе результаты о влиянии интеркалированных атомов хрома и железа, а также замещений в анионной подрешетке на структуру и физические свойства слоистых дихалькогенидов ниобия и тантала позволят построить более общую картину физических свойств халькогенидов переходных металлов. Такие данные, несомненно, могут быть полезны при разработке материалов с новыми функциональными свойствами, а также для построения новых теоретических моделей для описания поведения интеркалированных систем, что будет способствовать развитию дальнейших исследований в этой области.

Методология и методы исследования. Поликристаллические образцы синтезированы методом твердофазных реакций по одно- и двухстадийной технологиям в вакуумированных кварцевых ампулах. Гидрирование слоистых интеркалированных соединений Cr_xNbSe_2 (x=0, 0.05, 0.1, 0.33) образцов проводилось путем помещения образцов в атмосферу водорода в течение t=7 часов при температуре T=630 К. Аттестация фазового состава и исследование кристаллической структуры полученных соединений проводились методом рентгеновского дифракционного анализа. Для контроля химического состава использовалась рентгеновская энергодисперсионная спектроскопия. Обработка дифракционных данных и уточнение кристаллографических параметров проводились методом полнопрофильного анализа с помощью пакета программ FullProf. Для изучения кинетических свойств соединений проводились измерения температурных зависимостей электросопротивления в широком интервале температур, а также измерения магнитосопротивления при различных температурах. Для выявления влияния интеркалации на электронные и решеточные свойства соединений для ряда

образцов были проведены измерения теплоемкости релаксационным методом. В работе так же представлены результаты экспериментальных исследований магнитных свойств полученных соединений. Данные о поведении магнитной восприимчивости в парамагнитной области температур были использованы для определения эффективных магнитных моментов интеркалированных атомов 3d металлов, парамагнитных температур Кюри и установления преобладающего типа обменного взаимодействия в интеркалированных соединениях. Для изучения влияния интеркалации атомов хрома и железа на магнитные свойства дихалькогенидов ниобия и тантала, определения магнитного состояния и определения основных магнитных характеристик выполнялись измерения температурных полевых зависимостей И намагниченности в широком интервале магнитных полей и температур. Для выявления изменений электронного И спинового состояния интеркалированных атомов И перераспределения электронной плотности в соединениях, использовалась ЯМР спектроскопия на ядрах ⁵³Cr, ⁹³Nb и ⁵⁷Fe.

Использование комплексного подхода к проведению исследований позволило сделать выводы о роли интеркалации атомов хрома и железа и о влиянии замещения одного халькогена другим на свойства дихалькогенидов ниобия и тантала.

Положения, выносимые на защиту:

- 1. Синтезирован ряд интеркалатных материалов на основе дихалькогенидов ниобия и тантала M_xTCh_2 (M = Cr, Fe; T = Ta, Nb; Ch = S, Se, Te) и выявлены закономерности в изменениях их кристаллической структуры в результате интеркалации и замещения по анионной подрешетке.
- 2. В парамагнитной области соединений Cr_xNbSe_2 с высоким содержанием хрома ($x \ge 0.33$) выявлено существование в широкой области температур выше температуры Кюри так называемой фазы Гриффитса, наличие которой оказывает влияние не только на поведение магнитной восприимчивости, но и на поведение других физических свойств соединений.
- 3. С помощью измерений намагниченности и ЯМР спектроскопии установлено, что интеркалация атомов хрома в диселенид ниобия сопровождается существенным перераспределением электронной и спиновой плотности.
- 4. Обнаружено, что в отличие от селенидных соединений Cr_xNbSe_2 , в соединениях на основе дителлурида ниобия Cr_xNbTe_2 дальний магнитный порядок не возникает вплоть до x=0.6, формируется состояние типа кластерного стекла с пониженными температурами замерзания, а атомы хрома имеют более низкие значения величины эффективного магнитного момента из-за различий в ионных радиусах селена и теллура и увеличения степени ковалентности связей Cr-Ch при переходе от серы к теллуру.
- 5. Показана возможность гидрирования интеркалированных атомами хрома образцов $H_yCr_xNbSe_2$ при невысокой концентрации интеркалированных атомов (до x=0.1). Гидрирование соединений $H_yCr_xNbSe_2$ (до x=0.1) приводит к увеличению объема элементарной ячейки, к изменению поведения электросопротивления и магнитной восприимчивости данных материалов.
- 6. Показано, что при замещении серы селеном в соединениях $Fe_{0.25}TaS_{2-y}Se_y$ ($0 \le y \le 2$) все полученные соединения проявляют поведение, характерное для высокоанизотропных ферромагнетиков. Рост содержания селена в образце приводит к снижению температуры Кюри, по-видимому, из-за увеличения межатомных расстояний и уменьшения поляризации 5d электронов тантала.
- 7. Обнаружено, что условия термообработки и охлаждения образцов $Fe_{0.25}TaCh_2$ (Ch = S, Se) существенно влияют не только на их гистерезисные свойства, но и на температуру Кюри. Закаленный образец демонстрирует значительно сниженное значение T_C по сравнению с медленно охлажденным образцом, что можно объяснить различием в распределении атомов Fe в решетке, так как атомы железа, расположенные в танталовом слое, могут находиться в низкоспиновом состоянии.

Степень достоверности. Достоверность результатов проведенных исследований обеспечивается использованием хорошо аттестованных образцов. Достоверность также подтверждается применением стандартизованных методик измерений и согласованностью результатов измерений, полученных разными методами. Наблюдается хорошее согласие экспериментальных данных, полученных в настоящей работе, с имеющимися в литературе для дихалькогенидов ниобия и тантала.

Личный вклад автора. Диссертационная работа выполнялась под научным руководством д.ф.-м.н. Н.В. Баранова. Автор совместно с научным руководителем участвовал в обсуждении цели и постановке задач исследования, планировании экспериментов, анализе и интерпретации полученных результатов. Автор лично проводила синтез методом твердофазных реакций всех поликристаллических исследуемых образцов, а также подготавливала образцы к измерениям электросопротивления и намагниченности полученных соединений. Автором самостоятельно проводилась обработка всех полученных экспериментальных данных и их оформление для представления в виде докладов на научных школах и конференциях. Автором совместно с научным руководителем составлены программы измерений магнитных свойств на СКВИД-магнитометре и вибрационном магнитометре, а также измерений теплоемкости. Фазовый анализ рентгеновских данных и рентгеноструктурный анализ для синтезированных образцов проводились автором совместно с к.ф.-м.н. Н.В. Селезневой в лаборатории рентгеновской аттестации веществ и материалов УрФУ. Анализ химического состава и исследование топографии поверхности для образцов проводились совместно с к.ф.-м.н Д.К. Кузнецовым в УЦКП УрФУ. Публикации по теме диссертационной работы были подготовлены автором совместно с научным руководителем и соавторами.

Публикации. Основное содержание диссертации достаточно полно изложено в 6 статьях в ведущих рецензируемых зарубежных научных журналах, входящих в Перечень ВАК и индексируемых в системах научного цитирования Web of Science и Scopus. Среди них 2 статьи (2024г.) относятся к категории К1. Также содержание диссертации представлено в 13 тезисах докладов на российских и международных конференциях.

Апробация работы. Основные результаты работы представлены и обсуждены на объединенных научных семинарах лаборатории рентгеновской аттестации веществ и материалов и кафедры физики конденсированного состояния и наноразмерных систем ИЕНиМ УрФУ, а также на следующих всероссийских и международных конференциях, симпозиумах и школах-семинарах: Samarkand International Symposium on Magnetism (SISM-2023), XXXIII Российская молодёжная научная конференция с международным участием «Проблемы теоретической и экспериментальной химии», XXII Всероссийская школа - семинар по проблемам физики конденсированного состояния вещества (СПФКС-22) памяти М. И. Куркина, VIII Euro-Asian

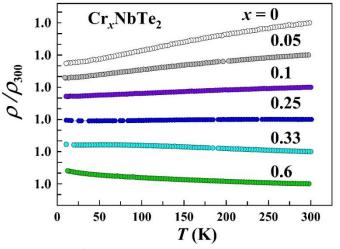
Symposium «Trends in Magnetism» (EASTMAG-2022), XXIV Международная конференция «Новое в магнетизме и магнитных материалах» (НМММ-2021), XXI Всероссийская школа семинар по проблемам физики конденсированного состояния вещества (СПФКС-21), VII Международная молодежная научная конференция "Физика. Технологии. Инновации." (ФТИ-2020), посвященная 100-летию Уральского федерального университета, 22-й Международный междисциплинарный симпозиум "Порядок, беспорядок и свойства оксидов" (ODPO-22), VII Euro-Asian Symposium «Trends in Magnetism» (EASTMAG-2019), VI Международная молодежная научная конференция "Физика. Технологии. Инновации." (ФТИ-2019), посвященная 70-летию основания Физико-технологического института, XXIX Российская молодёжная конференция c международным участием «Проблемы теоретической научная экспериментальной химии», посвящённая 150-летию Периодической таблицы химических элементов, LIII Школа ПИЯФ по физике конденсированного состояния. XXVIII Российская молодежная научная конференция с международным участием, посвященной 100-летию со дня рождения профессора В.А. Кузнецова «Проблемы теоретической и экспериментальной химии».

Связь работы с научными проектами и темами. Работа подготовлена при финансовой поддержке ППК 3.1.1.1.г-20 и Министерства науки и высшего образования Российской Федерации (проект FEUZ-2023-0017).

Соответствие паспорту научной специальности. Результаты, представленные в диссертационной работе, соответствуют пункту 1 «Теоретическое и экспериментальное изучение физической природы и свойств неорганических и органических соединений как в кристаллическом (моно- и поликристаллы), так и в аморфном состоянии, в том числе композитов и гетероструктур, в зависимости от их химического, изотопного состава, температуры и давления» Паспорта специальности 1.3.8. Физика конденсированного состояния.

Структура и объем диссертационной работы. Работа состоит из введения, четырех глав, заключения и списка используемой литературы. Полный объем работы составляет 141 страницу, включая 94 рисунков, 13 таблиц, 36 формул. Список литературы содержит 158 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

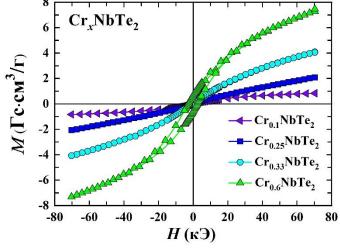

Во введении обоснована актуальность выбранной темы диссертации и проведения исследования, сформулированы постановка цели и задачи работы, обозначена научная новизна, приведены основные положения, выносимые на защиту.

В **первой главе** представлен литературный обзор, содержащий основные теоретические и экспериментальные результаты выполненных ранее исследований структурных и физических свойств дихалькогенидов переходных металлов в зависимости от их морфологии и структурной модификации. Приведено описание основных литературных результатов исследований кристаллической и электронной структуры, кинетических и магнитных свойств соединений на основе ДПМ, полученных путем интеркалации атомов 3*d*-элементов.

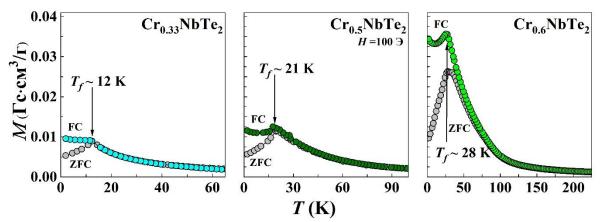
Во второй главе подробно описаны методики получения поликристаллических соединений M_xTCh_2 (M=Cr, Fe; T=Ta, Nb; Ch=S, Se, Te). Синтез всех соединений осуществлялся методом твердофазных реакций в вакуумированных кварцевых ампулах. Для получения соединений Cr_xNbSe_2 (0 $\leq x \leq 0.5$) и Cr_xNbTe_2 (0 $\leq x \leq 0.6$) использовалась двухстадийная технология. На первой стадии готовилась матрица интеркалирования $NbCh_2$ (Ch = Se, Te), а на второй – образцы интеркалированных соединений $Cr_x NbCh_2$. Для получения системы образцов $Fe_{0.25}TaS_{2-y}Se_y$ ($0 \le y \le 2$) использовалась одностадийная технология, при которой смесь исходных компонентов в соответствующих пропорциях помещалась в вакуумированные кварцевые ампулы и для проведения твердофазных реакций подвергалась термической обработке, включающей медленный нагрев с промежуточной выдержкой при 200 °C, 450 °C и 500 °C в течение суток при каждой температуре и выдержку при температуре 700 °C в течение 120 часов. После синтеза образцы измельчались, прессовались в таблетки и подвергались гомогенизирующему отжигу в течение 120 часов при 700 °C. Гидрирование порошковых соединений в данной работе проводилось к.ф.-м.н. Терентьевым П.Б. в Институте физики металлов УрО РАН под давлением $P_1 = 0.2$ МПа и $P_2 = 16.5$ МПа, в тигель подавался водород в течение t=7 часов при температуре T=630 К. Аттестация фазового состава и исследования кристаллической структуры соединений проводились методом рентгеновского дифракционного анализа с использованием дифрактометра Bruker D8 Advance. Анализ дифракционных данных и уточнение структур, исследуемых в настоящей работе образцов, проводился совместно с к.ф.-м.н. Н.В. Селезневой. Анализ химического состава и исследование топографии поверхности для образцов проводились совместно с к.ф.- м.н Д.К. Кузнецовым в УЦКП УрФУ на сканирующем электронном микроскопе Auriga (Carl Zeiss, Германия), оснащенном энергодисперсионным спектрометром. Измерения намагниченности образцов в интервале температур от 300 К до 1000 К проводились по нашей просьбе к.ф.-м.н, в.н.с. Д.А. Шишкиным в секторе вибрационной магнитометрии ЦКП «Испытательный

нанотехнологий и перспективных материалов» Института физики металлов УрО РАН на вибромагнетометре 7407 VSM (Lake Shore, USA). Измерения намагниченности образцов при температурах от 2 К до 350 К выполнялись посредством магнитоизмерительного комплекса MPMS XL 7 фирмы QUANTUM DESIGN к.ф.-м.н, доцентом А.С. Волеговым в центре коллективного пользования. Измерения температурных зависимостей теплоемкости проводились с использованием установки PPMS DynaCool (Quantum Design, USA) в температурном интервале (1.8 – 300) К на образцах массой 10-20 мг. Измерения температурных зависимостей электрического сопротивления выполнялись четырехконтактным методом в температурном интервале (5 – 300) К с помощью автономного криостата замкнутого цикла CryoFree204. Измерения спектров ЯМР на ядрах ⁵³Cr и ⁹³Nb для соединений Cr_xNbSe₂ проводились в ИФМ УрО РАН к.ф.-м.н. Оглобличевым В.В. стандартным методом спинового эха $(\tau - t_{\text{del}} - \tau - t_{\text{del}} - echo)$ с помощью модифицированного SXP 4100 (Bruker) импульсного спектрометра при $T = 4.2 \ \mathrm{K}$ в широком диапазоне частот $v = 40 - 75 \ \mathrm{M}\Gamma$ ц без приложения внешнего магнитного поля. Спектры ЯМР на ядрах ⁵⁷Fe были записаны методом развертки по частоте в диапазонах частот 20 - 75 МГц при температуре жидкого гелия T = 4.2 К в локальном магнитном поле.

В третьей главе представлены результаты исследования кристаллической структуры, электрических и магнитных свойств, а также теплоемкости интеркалированных хромом соединений на основе диселенида и дителлурида ниобия. Был выполнен синтез соединения NbTe₂, а также соединения NbSe₂ в разных структурных модификациях, проведена аттестация и исследованы магнитные и тепловые свойства. С использованием полученных соединенийматриц был синтезирован ряд интеркалированных хромом соединений $Cr_x NbCh_2$ (Ch = Se, Te) в широком концентрационном диапазоне. Были уточнены данные, полученные в работе [13] и установлено, что кристаллическая структура образцов $Cr_x NbSe_2$ с содержанием $Cr x \le 0.25$ принадлежит той же пространственной группе, что и соединение-матрица NbSe2, однако в соединении $Cr_{0.25}NbSe_2$ атомы хрома упорядочиваются в плоскости ab, образуя сверхструктуру $2a_0 \times 2a_0$ (a_0 - параметр решетки соединения-матрицы NbSe₂). При более высоких концентрациях Cr (0.25 < x < 0.5),кристаллическая структура Cr_xNbSe_2 характеризуется наличием сверхструктуры $\sqrt{3}a_0 \times \sqrt{3}a_0$, которая может быть описана пространственной группой $P6_322$. В то время как в ряду интеркалированных соединений Cr_xNbTe₂, удалось получить соединения с большей максимальной концентрацией до x = 0.6.


Рисунок 1 — Температурные зависимости нормированного удельного электрического сопротивления, измеренные на образцах Cr_xNbTe_2

Установлено, что внедрение атомов хрома в дителлурид ниобия Cr_xNbTe₂ сопровождается изменениями кристаллической структуры и сменой пространственной группы от С2/м к P2/m (0.25 $\leq x \leq$ 0.6). Показано, что интеркалация атомов хрома в NbTe₂ привела к изменению вида зависимостей $\rho(T)$ (рисунок 1). Образцы $Cr_x NbTe_2$ с концентрацией хрома $x \le 0.25$ в области 50 K температур выше имеют


металлический тип проводимости, а увеличение содержания хрома выше x = 0.33 приводит к неметаллическому ходу сопротивления во всем температурном интервале ниже комнатной температуры.

С целью установления основных факторов, определяющих формирование магнитных моментов в интеркалированных халькогенидах переходных металлов, было проведено комплексное исследование соединений Cr_xNbCh_2 . Результаты магнитных исследований системы Cr_xNbSe_2 дополняют данные, представленные в работе [13]. Впервые получены данные и исследовано поведение магнитных свойств соединений Cr_xNbTe_2 с концентрацией хрома до $x \le 0.6$. Измерения полевых (рисунок 2) и температурных (рисунок 3) зависимостей намагниченности образцов Cr_xNbTe_2 , свидетельствуют о том, что в области низких температур наблюдается поведение намагниченности характерное для кластерных стекол. С увеличением содержания хрома в системе Cr_xNbTe_2 наблюдается рост температуры замерзания T_f , и рост парамагнитной температуры Кюри θ_p , которая имеет положительный знак, что указывает на

доминирование взаимодействий ферромагнитного типа. Однако, полученных следует ИЗ данных, замерзания температуры системе Cr_xNbTe₂ существенно ниже, чем в селенидных соединениях. Такое различие в магнитном состоянии обусловлено ослаблением обменных взаимодействий в случае интеркалированного дителлурида ниобия из-за больших межатомных расстояний.

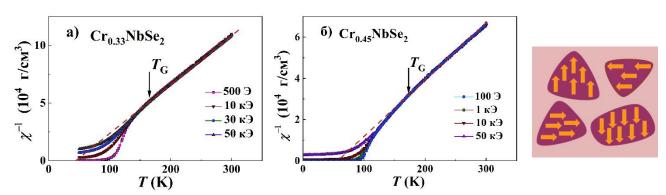
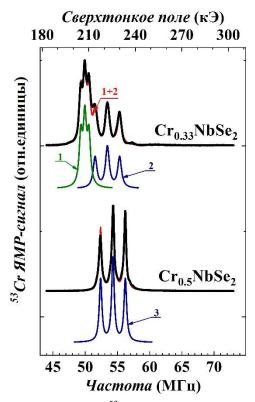


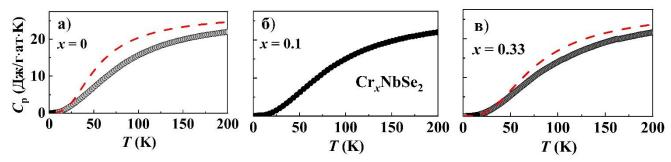
Рисунок 2 — Полевые зависимости намагниченности для соединений $Cr_x NbTe_2$


Рисунок 3 — Температурные зависимости намагниченности для соединений Cr_xNbTe_2 (x = 0.33, 0.5, 0.6), измеренные в поле 100 Э

При анализе парамагнитной восприимчивости $\operatorname{Cr}_x \operatorname{NbSe}_2$ было обнаружено, что обратная восприимчивость $\chi^{-1} = (H/M)$ в зависимости от температуры для $\operatorname{Cr}_{0.33}\operatorname{NbSe}_2$ подчиняется закону Кюри-Вейса (КВ) выше ~ 160 К, т.е. значительно выше температуры Кюри этого соединения ($T_C = 82$ К), и показывает существенное отклонение (спад) от высокотемпературной прямой (рисунок 4a), соответствующей поведению КВ ниже 160 К. Подобное поведение зависимости $\chi^{-1}(T)$ выше температуры магнитного упорядочения наблюдается и для соединения $\operatorname{Cr}_{0.45}\operatorname{NbSe}_2$ (рисунок 46) и было ранее обнаружено для $\operatorname{Cr}_{0.5}\operatorname{NbSe}_2$ [14]. Отклонение $\chi^{-1}(T)$ от КВ поведения с понижением температуры более выражено в слабых магнитных полях и может свидетельствовать о появлении областей (кластеров) ближнего магнитного порядка с высокой восприимчивостью в номинально парамагнитном состоянии, что позволило предположить существование так называемой фазы Гриффитса [15, 16]. Проверка по нашей просьбе этой гипотезы А.С. Овчинниковым с использованием теории скейлинга Ли-Янга показала, что фаза Гриффитса реализуется в соединениях $\operatorname{Cr}_x\operatorname{NbSe}_2$ с содержанием хрома $0.33 \le x \le 0.45$ [A3], однако при x < 0.33 поведение восприимчивости не соответствует модели Гриффитса. Предложенная в [А3] методика может быть использована для выявления фазы Гриффитса в других системах.

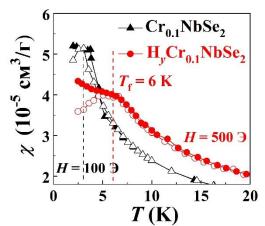
Рисунок 4 — Обратная магнитная восприимчивость χ^{-1} как функция температуры в различных магнитных полях для $Cr_{0.33}NbSe_2$ (а) и $Cr_{0.45}NbSe_2$ (б). (справа) Схематический пример формирования фазы Гриффитса

Формирование областей ближнего порядка и фазы Гриффитса в соединениях Cr_xNbSe_2 при $x \ge 0.33$, по-видимому, являются причиной необычного поведения электросопротивления, обнаруженного в работе [13].


Рисунок 5 — 53 Cr экспериментальные (условные обозначения) и моделированные (линии 1, 2 и 3) ЯМР спектры для $Cr_{0.33}$ NbSe₂ и $Cr_{0.5}$ NbSe₂ при $T=4.2~{\rm K}$

Расчет эффективного магнитного момента (μ_{eff}) из данных по парамагнитной восприимчивости показал, что величина эффективного магнитного момента в расчете на атом хрома оказалась ниже для теллуридных соединений, чем для селенидной системы и для свободного иона Cr^{3+} , что, вероятно, обусловлено увеличением степени гибридизации 3d электронных состояний хрома с 5р состояниями теллура из-за увеличения степени ковалентности связей Cr-Ch при переходе от селена к теллуру. А дополнительные измерения спектров ЯМР ⁵³Сг (рисунок 5), выполненные по нашей просьбе в ИФМ УрО РАН зав. лабораторией, к.ф.-м.н. В. В. Оглобличевым, показали, что атомы хрома в Cr_xNbSe_2 при x = 0.33 и x = 0.5 имеют валентное состояние, близкое к Cr^{4+} и магнитные моменты имеют значения 2.15 $\mu_{\rm B}$ и 2.3 $\mu_{\rm B}$, соответственно. При анализе результатов измерений

намагниченности при температуре 2 К было обнаружено, что имеет место уменьшение среднего магнитного момента в расчете на атом Cr в насыщении при увеличении концентрации хрома в Cr_xNbSe_2 выше x=0.33, что может быть вызвано появлением магнитного момента на атомах Nb из-за перераспределения электронной плотности между связями Nb—Se и Cr—Se. Измерения спектров ЯМР на ядре ⁹³Nb в поликристаллических образцах Cr_xNbSe_2 (x=0.33, 0.5) в нулевом внешнем магнитном поле при температуре T=4.2 К показали наличие локального магнитного поля $h_{loc}\approx 160$ кЭ на ядрах Nb, что может быть объяснено высокой степенью гибридизации a_{1g} и e_g орбиталей 3d электронов хрома с $4d_{z^2}$ и 5s орбиталями ниобия.


Были проведены температурные измерения теплоемкости соединений-матриц 2H-NbSe₂ и NbTe₂. Полученное для NbTe₂ значение температуры Дебая (~200 K) оказалось ниже, чем у 2H-NbSe₂ (220 K), что вполне закономерно, учитывая различие в массах атомов Те и Se. Впервые были проведены температурные измерения теплоемкости соединений Cr_{0.1}NbSe₂ и Cr_{0.33}NbSe₂ (рисунок 6), которые показали, что интеркалация хрома приводит к росту температуры Дебая, что указывает на увеличение жесткости решетки. По-видимому, это является следствием

образования ковалентноподобных связей между интеркалированными атомами хрома и атомами селена, расположенными в прилегающих слоях. Как следует из анализа низкотемпературной теплоемкости, интеркалация атомов Сг не привела к заметному изменению коэффициента электронной теплоемкости, а, следовательно, плотности электронных состояний на уровне Ферми по сравнению с исходным соединением NbSe₂. Последнее свидетельствует о том, что 3*d* электроны атомов хрома остаются достаточно хорошо локализованными после интеркалации.

Рисунок 6 — Температурные зависимости теплоемкости образцов Cr_xNbSe_2 с разной концентрацией Cr. Пунктирными линиями показаны кривые $C_p(T) = C_{el} + C_{latt}$ с решеточным вкладом, рассчитанным в модели Дебая

Для выяснения возможности гидрирования слоистых интеркалированных соединений Cr_xNbSe_2 и его влияния на структуру, стабильность и свойства полученных соединений, проводилось наводораживание образцов. В работе показано, что соединение $2H-NbSe_2$ образует однофазный гидрид и полученные при давлениях P_1 и P_2 соединения H_yNbSe_2 , аналогичны исходному, однофазны и обладают гексагональной структурой. Результаты, полученные из данных терморентгенографии показывают, что процесс деинтеркалации водорода из соединения

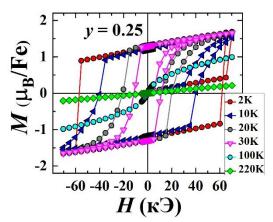

Рисунок 7 — Низкотемпературные зависимости магнитной восприимчивости $Cr_{0.1}NbSe_2$ и $H_yCr_{0.1}NbSe_2$ в поле H=100 Э и H=500 Э, соответственно

 H_{ν} NbSe₂ начинается при $T \approx 500$ K; в температурном интервале 500-600 К наблюдается сосуществование двух фаз с разными параметрами решетки. При достижении $T \approx 625$ K объем $H_v NbSe_2$ становится близким к объему NbSe2, что свидетельствует о дегидрировании соединения. Установлено, гидрирование ведет к изменению температурного хода сопротивления для соединений $Cr_x NbSe_2$ (x = 0, 0.05, 0.1), а также к подавлению сверхпроводящего 2H-NbSe₂. перехода в соединении также обнаружено, что гидрирование соединения

 $Cr_{0.1}NbSe_2$ повышает температуру перехода парамагнетик – спиновое стекло в 2 раза (до $T_f = 6$ K) (рисунок 7). Однако, после обработки в среде водорода соединения $Cr_{0.33}NbSe_2$, изменений температуры Кюри не было выявлено.

Результаты, представленные в третьей главе, опубликованы в работах [A1–A3, A11, A13–A15].

Четвертая глава посвящена результатам исследования влияния замещения по анионной подрешетке на кристаллическую структуру, а также кинетические и магнитные свойства соединений $Fe_{0.25}TaS_{2-y}Se_y$ ($0 \le y \le 2$). Полученные результаты позволят глубже понять, как ионы халькогена влияют на формирование физических свойств халькогенидных слоистых соединений. Особое внимание уделено соединениям $Fe_{0.25}TaCh_2$ (Ch = S, Se), поскольку данные в литературе, относящиеся к данным составам, не согласуются между собой.


Рисунок 8 — (слева) Схематически показана кристаллическая структура $Fe_{0.25}TaSe_2$ (вид сверху и сбоку, соответственно). (справа) Изменения параметров решетки и отношения c/a в зависимости от содержания селена в системе $Fe_{0.25}TaS_{2-y}Se_y$

Рентгенографическая аттестация синтезированных соединений системы $Fe_{0.25}TaS_{2-y}Se_y$ показала отсутствие концентрационных фазовых переходов; все соединения кристаллизуются в гексагональной сингонии (пр. группа $P6_3/mmc$), атомы железа и вакансии упорядочены с образованием сверхструктуры $2a_0\times 2a_0\times c_0$ (a_0 и c_0 — параметры решетки-матрицы TaS_2). Увеличение содержания Se в $Fe_{0.25}TaS_{2-y}Se_y$ приводит к ожидаемому расширению кристаллической решетки (рисунок 8). Отношение c/a увеличивается от 1.839 для $Fe_{0.25}TaS_2$ (y=0) до c/a=1.852 для $Fe_{0.25}TaSe_2$ (y=2).

На аттестованных образцах системы $Fe_{0.25}TaS_{2-y}Se_y$ проведены измерения кинетических свойств, полевых зависимостей намагниченности, температурных зависимостей магнитной восприимчивости, а также магнитосопротивления с целью установления закономерностей

изменений электронных и магнитных состояний, вызванных «отрицательным химическим» давлением из-за различия в ионных радиусах халькогенов.

Для всех образцов системы $Fe_{0.25}TaS_{2-y}Se_y$ были получены полевые зависимости намагниченности, измеренные при разных температурах, на которых наблюдается скачкообразное поведение намагниченности при T=2 К. Однако, при повышении температуры выше $T\sim 5$ –7 К изменение намагниченности становится постепенным (рисунок 9). Для незамещенного соединения $Fe_{0.25}TaS_2$ резкие скачки намагниченности выявлены при T=2 К в полях близких к $H_C\sim 56$ к 2 , и ранее наблюдались на монокристаллических образцах $Fe_{0.25}TaS_2$ в магнитных полях, приложенных вдоль оси c [12, 17]. В работе показано, что значения H_C для $Fe_{0.25}TaS_{2-y}Se_y$ с различными концентрациями Se демонстрируют экспоненциальный спад c повышением температуры (рисунок 10). Как было показано в работе [17], зависимость $H_C(T)$ для монокристалла $Fe_{0.25}TaS_2$ также подчиняется экспоненциальному закону. Такое поведение характерно для Изинговских ферромагнетиков, в которых магнитный гистерезис зависит от локального обменного поля, а не от магнитокристаллической анизотропии, поскольку в последнем случае коэрцитивная сила должна подчиняться степенному закону [18].

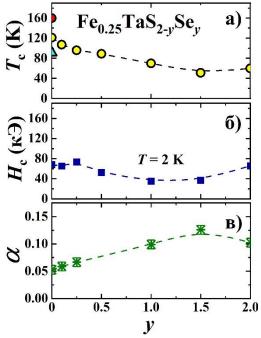

Fe_{0.25}TaS_{2-y}Se_y y = 0.25 y = 0.1 y = 0.1

Рисунок 9 — Полевые зависимости намагниченности для $Fe_{0.25}TaS_{1.25}Se_{0.25}$, измеренные при различных температурах

Рисунок 10 — Температурное изменение значений коэрцитивной силы для $Fe_{0.25}TaS_{2-y}Se_y$ с различной концентрацией Se. Сплошные линии представляют собой кривые подгонки в соответствии с $H_c = H_c(0) \cdot \exp(-\alpha T)$

Замещение серы на селен в $Fe_{0.25}TaS_{2-y}Se_y$ влияет на поведение намагниченности с температурой и приложенным магнитным полем и приводит к значительному снижению (почти в два раза) магнитной критической температуры (рисунок 11), что свидетельствует о существенном ослаблении энергии обменных взаимодействий при замещении. Как видно, зависимость $\alpha(y)$ является немонотонной и ведет себя с увеличением концентрации атомов селена противоположным образом по сравнению с кривой $T_C(y)$. зависимость $H_C(y)$ также немонотонна и между поведением кривых $H_C(y)$ и $T_C(y)$ существует корреляция, что подтверждает изинговский характер спинового состояния атомов Fe в этой системе. Это

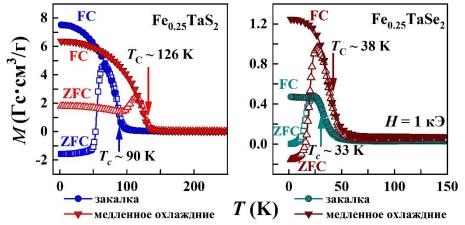
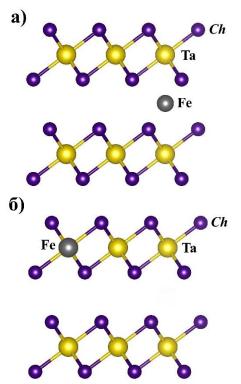

объясняется тем, что в ферромагнетиках Изинга коэрцитивная сила определяется обменной энергией. Магнитный гистерезис соединений $Fe_{0.25}TaS_{2-y}Se_y$ определяется локальным обменным взаимодействием между соседними моментами Fe и коэффициент α в выражении $H_C(T) = H_C(0) \cdot \exp(-\alpha T)$ обратно пропорционален константе обменной связи между соседними моментами Fe.

Рисунок 11 — Изменение (а) магнитной критической температуры, (б) значения коэрцитивной силы при T=2 K, (в) коэффициента α из выражения $H_c(T)=H_c(0)\cdot \exp(-\alpha T)$ в образцах $Fe_{0.25}TaS_{2-y}Se_y$


В работе [12], было установлено, что значения $H_{\rm C}$ зависят от условий термообработки и охлаждения кристаллов Fe_{0.25}TaS₂ и изменяются от 27 кЭ до 70 кЭ. При анализе полевых и температурных намагниченности, было зависимостей обнаружено, что условия термообработки и охлаждения образцов $Fe_{0.25}$ Ta Ch_2 (Ch = S, Se) существенно влияют не только гистерезисные свойства, но и на температуру (рисунок 12). Закаленный образец демонстрирует существенно сниженное значение $T_{\rm C}$ по сравнению с медленно охлажденным образцом. Такое различие в значениях $T_{\rm C}$ может быть связано с частичным перемешиванием атомов тантала и железа при быстрой закалке, что приводит к размещению атомов железа как в слое

тантала (рисунок 13а), так и между Ch—Та—Ch сэндвичами (рисунок 13б), где атомы Fe имеют разные спиновые состояния. Как было показано ранее из анализа поведения магнитной восприимчивости замещенного соединения $Ta_{0.9}Fe_{0.1}Se_2$, ионы Fe ниже $T\sim 250$ K имеют низкоспиновое состояние, а при нагреве переходят в высокоспиновое состояние [19].

Рисунок 12 — Температурные зависимости намагниченности для соединений $Fe_{0.25}TaCh_2$ (Ch = S, Se) в магнитном поле H = 1 кЭ

Таким образом, различное локальное окружение атомов Fe, внедренных в решетку $TaCh_2$ между сэндвичами Ch—Ta—Ch или внутри сэндвичей, существенно влияет на спин и электронное состояние Fe. Также из анализа данных, полученных из регистрации спектров ЯМР на ядрах 57 Fe в диапазоне частот 20-75 МГц продемонстрировано, что можно выделить две области частот в которых наблюдается сигнал. Полученный результат может являться дополнительным аргументом для выше выдвинутого предположения о наличии частичного перемешивания атомов железа и тантала, т.е. о возможности размещения атомов железа как в слое тантала, так и между Ch—Ta—Ch сэндвичами, где атомы Fe имеют разные спиновые состояния.

Рисунок 13 – Типы интеркалации атомов Fe в слоистую систему $TaCh_2$ (Ch = S, Se): (a) в щель B-д-B; (б) замещение на позиции Ta

Ha аттестованных образцах системы Fe_{0.25}TaS_{2-v}Se_v были проведены измерения зависимостей температурных электросопротивления. Показано, что удельное электрическое сопротивление всех соединений $0 \le y \le 2$ демонстрирует практически одинаковое поведение с температурой: хорошо выраженный перегиб вблизи магнитной критической температуры $T_{\rm C}$, изменение металлического типа ниже $T_{\rm C}$ и слабое почти линейное изменение $T_{\rm C}$. дополнительного выше Для изучения изменения магнитных и транспортных свойств в $Fe_{0.25}TaS_{2-\nu}Se_{\nu}$ системе на образцах были проведены измерения магнитосопротивления. Увеличение магнитного поля вызывает незначительное увеличение удельного

сопротивления во всех образцах, а при достижении критического значения поля MR снижается, но не достигает постоянного значения. Дальнейшее циклирование в диапазоне полей $\pm 90~\text{к}$ Э приводит к изменению MR от -4% до +4% с максимальными значениями в области коэрцитивной силы.

Результаты, представленные в четвертой главе, опубликованы в работах [A4–A6, A7–A10, A12].

В заключении представлены основные результаты и выводы, полученные в работе.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

В работе выполнен синтез, аттестация и проведено исследование кристаллической структуры и физических свойств дихалькогенидов ниобия и тантала, интеркалированных атомами хрома и железа.

По результатам проведенной работы сделаны следующие выводы:

- Впервые показано, что увеличение содержания хрома в соединениях Cr_xNbTe_2 до концентрации хрома x=0.6 приводит к установлению в области низких температур магнитного состояния типа спинового и кластерного стекла в отличие от селенидной системы Cr_xNbSe_2 , в которой при $x \ge 0.33$ возникает ферромагнитное упорядочение, что обусловлено, по-видимому, различием ионных радиусов селена и теллура.
- В парамагнитной области соединений Cr_xNbSe_2 с высоким содержанием хрома ($x \ge 0.33$) обнаружено существование фазы Гриффитса в широкой области температур выше температуры Кюри, что влияет не только на поведение магнитной восприимчивости, но и на поведение других физических свойств этих соединений.
- Установлено, что в системе Cr_xNbSe_2 в результате существенного перераспределения электронной и спиновой плотности, вызванного интеркалацией, валентное состояние хрома в интеркалированных соединениях с $x \ge 0.33$ становится близким к +4, а на атомах ниобия возникает магнитный момент с противоположным направлением по отношению к магнитному моменту хрома.
- Показана устойчивость гидрида H_y NbSe₂ и возможность гидрирования интеркалированных атомами хрома образцов H_y Cr_xNbSe₂ при невысокой концентрации интеркалируемых атомов (до x = 0.1). Обнаружено, что гидрирование повышает температуру фазового перехода парамагнетик спиновое стекло в соединении $Cr_{0.1}$ NbSe₂ почти в 2 раза.
- Впервые синтезирована система соединений $Fe_{0.25}TaS_{2-y}Se_y$ ($0 \le y \le 2$), показано, что замещение серы селеном в $Fe_{0.25}TaS_{2-y}Se_y$ сопровождается снижением температуры магнитного упорядочения, по-видимому, из-за увеличения межатомных расстояний и уменьшения поляризации 5d электронов тантала. Установлено, что все соединения демонстрируют поведение, характерное для Изинговских ферромагнетиков с коэрцитивной силой до ~ 60 кЭ при низких температурах.
- Обнаружено, что условия термообработки образцов Fe_{0.25}TaS₂ и Fe_{0.25}TaSe₂ существенно влияют на их гистерезисные свойства и на температуру Кюри, что, по-видимому, связано с частичным перемешиванием атомов Fe и Ta и различием в спиновом состоянии атомов железа в зависимости от локального окружения.

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

- 1. 2D transition metal dichalcogenides / S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis. Текст: непосредственный // Nat. Rev. Mater. 2017. Vol. 2. P. 17033.
- 2. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets / R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, M. Terrones. Текст: непосредственный // Acc. Chem. Res. 2015. Vol. 48. P. 56–64.
- 3. Strongly Correlated Materials / E. Morosan, D. Natelson, A. H. Nevidomskyy, Q. Si. Текст: непосредственный // Adv. Mater. 2012. Vol. 24. Р. 4896–4923.
- 4. Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides / J. Shi, M. Hong, Z. Zhang, Q. Ji, Y. Zhang. Текст: непосредственный // Chem. Rev. 2018. Vol. 376. Р. 1–19.
- 5. Controlled synthesis of atomically thin 1T-TaS₂ for tunable charge density wave phase transitions / W. Fu, Y. Chen, J. Lin, X.Wang, Q. Zeng, J. Zhou, L. Zheng, H. Wang, Y. He, H. He, Q. Fu, K. Suenaga, T. Yu, Z. Liu. Текст: непосредственный // Chem. Mater. 2016. Vol. 28. P. 7613–7618.
- 6. Amplitude Higgs mode in the 2H-NbSe₂ superconductor / M.-A. Méasson, Y. Gallais, M. Cazayous, B. Clair, P. Rodière, J. Corio, A. Saguta, Toward various representative (Phys. Rev. B. 2014, 190, P. 060503)
- P. Rodière, L. Cario, A. Sacuto. Текст: непосредственный // Phys. Rev. B. 2014. Vol. 89. P. 060503
- 7. Large-area atomic layers of the charge-density-wave conductor TiSe₂ / H. Wang, Y. Chen, M. Duchamp, Q. Zeng, X. Wang, S. H. Tsang, H. Li, L. Jing, T. Yu, E. H. T. Teo, Z. Liu. Текст: непосредственный // Adv. Mater. 2018. Vol. 30. P. 1704382.
- 8. Parkin, S. S. P. 3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties / S. S. P. Parkin, R. H. Friend. Текст: непосредственный // Philos. Mag. B. 1980. Vol. 41. Р. 65–93.
- 9. Chiral magnetic soliton lattice on a chiral helimagnet / Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, A. S. Ovchinnikov, J. Kishine. Текст: непосредственный // Phys. Rev. Lett. 2012. Vol. 108. P. 107202.
- 10. Crystal and magnetic structures of Cr_{1/3}NbSe₂ from neutron diffraction / A. F. Gubkin, E. P. Proskurina, Y. Kousaka, E. M. Sherokalova, N. V. Selezneva, P. Miao, S. Lee, J. Zhang, Y. Ishikawa, S. Torii, T. Kamiyama, J. Сатро, J. Akimitsu, N. V. Baranov. Текст: непосредственный // J. Appl. Phys. 2016. Vol. 119. P. 13903.
- 11. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2H-TaS₂ and 2H-TaSe₂ / D. C. Freitas, P. Rodière, M. R. Osorio, E. Navarro-Moratalla, N. M. Nemes, V. G. Tissen, L. Cario, E. Coronado, M. García-Hernández, S. Vieira, M. Núñez-Regueiro, H. Suderow. Текст: непосредственный // Phys. Rev. B. 2016. Vol. 93. P. 1184512.
- 12. Giant magnetic coercivity and ionic superlattice nano-domains in Fe_{0.25}TaS₂ / Y. J. Choi, S. B. Kim, T. Asada, S. Park, W. Wu, Y. Horibe, S-W. Cheong. Текст: непосредственный // Europhysics letters. 2009. Vol. 86. P. 37012.
- 13. Шерокалова, Е. М. Влияние интеркалации атомов 3d- и 4f-элементов на структуру и физические свойства дихалькогенидов переходных металлов IV и V групп: дис. ... канд. физ.-мат. наук 01.04.07: защищена 20.12.18: утв. 20.12.18 / Елизавета Маратовна Шерокалова. Екатеринбург, 2018. 172 с.
- 14. Structure cristalline et propriétés physiques électriques et magnétiques des phases $M_{0.50}$ NbSe $_2$ (M = Ti, V, Cr) / A. Meerschaut, M. Spiesser, J. Rouxel, O. Gorochov. Текст: непосредственный // J. Solid State Chem. 1980. Vol. 31. P. 31–40.
- 15. Griffiths, R. B. Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet / R. B. Griffiths. Текст: непосредственный // Phys. Rev. Lett. 1969. Vol. 23. P. 17–19.
- 16. Bray, A. J. Nature of the Griffiths phase / A. J. Bray. Текст: непосредственный // Phys. Rev. Lett. 1987. Vol. 59. P. 586—589.
- 17. Sharp switching of the magnetization in Fe₁₄TaS₂ / E. Morosan, H. W. Zandbergen, L. Li, M. Lee, J. G. Checkelsky, M. Heinrich, T. Siegrist, N. P. Ong, R. J. Cava. Текст: непосредственный // Phys. Rev. B. 2007. Vol. 75. P. 104401.
- 18. Oesterreicher, H. Giant intrinsic magnetic hardness / H. Oesterreicher. Текст: непосредственный // Appl. Phys. 1978. Vol. 15. P. 341–354.
- 19. Eibschütz, M. Low-spin high-spin equilibria in 1T– Fe_x $Ta_{1-x}S_2$ ($x \le \frac{1}{3}$) and the temperature dependence of the associated energy gap / M. Eibschütz, M. E. Lines, F. J. DiSalvo. Текст: непосредственный // Phys. Rev. B. 1977. Vol. 15. P. 103–114.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ АВТОРОМ ПО ТЕМЕ ДИССЕРТАЦИИ

- A1. Crystal structure, properties and griffiths-like phase in niobium diselenide intercalated with chromium / N.M. Toporova, E.M. Sherokalova, N.V. Selezneva, V.V. Ogloblichev, N.V. Baranov // J. Alloys Compd. 2020. V. 848. P. 156534-11.
- A2. Electronic states in ferromagnetic Cr_xNbSe_2 (x = 0.33, 0.5) studied by ⁵³Cr and ⁹³Nb NMR spectroscopy / V.V. Ogloblichev, N.V. Baranov, P.A. Agzamova, A.Yu. Germov, N.M. Nosova, Yu.V. Piskunov, E.M. Sherokalova, N.V. Selezneva, A.F. Sadykov, A.G. Smolnikov // Phys. Rev. B. -2021. V. 104. P. 245115-10.
- A3. Unbiased identification of the Griffiths phase in intercalated transition metal dichalcogenides by using Lee-Yang zeros / A.S. Ovchinnikov, J.G. Ruziev, N.M. Nosova, E.M. Sherokalova, N.V. Selezneva, N.V. Baranov // Phys. Rev. B. 2022. V. 106. P. L020401-5.
- A4. Anion substitution effect on the crystal structure and properties of high-coercive $Fe_{0.25}TaX_2$ (X = S, Se) / N.M. Nosova, E.M. Sherokalova, N.V. Selezneva, A.S. Volegov, N.V. Baranov // Mater. Chem. Phys. -2023. V.309. P.128446-9.
- A5. Influence of the type of intercalation on spin-glass formation in the Fe-doped $TaS_2(Se_2)$ polytype family / A.S. Ovchinnikov, I.G. Bostrem, Vl.E. Sinitsyn, N.M. Nosova, N.V. Baranov // Phys. Rev. B. -2024. V. 109. P. 054403-12.
- A6. Crystal structure, magnetic and transport properties of $Fe_{0.25}TaSe_2 / \underline{N.M. Nosova}$, N.V. Selezneva, D.A. Shishkin, N.V. Baranov // Phys. B: Condens. Matter. -2024. V. 673. P. 415492-7.
- A7. Crystal structure and magnetic properties of Fe_{0.25}TaSe₂ / N.M. Nosova, A.S. Volegov, N.V.Selezneva, N.V. Baranov // Book of abstracts Samarkand International Symposium on Magnetism SISM–2023. 2023. C. 73
- А8. Спиновое состояние железа и спиновые переходы в интеркалированных и замещенных слоистых соединениях Fe_xTaCh_2 и $Fe_xTa_{1-x}Ch_2$ (Ch=S, Se) / <u>Н.М. Носова</u>, Н.В. Селезнева, Н.В. Баранов // Тезисы докладов XXII Всероссийской школы—семинара по проблемам физики конденсированного состояния вещества памяти М.И. Куркина (СПФКС–22) 2022. С. 109. ISBN 978-5-6045774-6-2. Текст: непосредственный.
- A9. Magnetic properties and magnetic hysteresis in high-coercive Fe_{0.25}TaS₂: effect of Se for S substitution / N.M. Nosova, N.V. Baranov, E.M. Sherokalova, A.S. Volegov // Book of abstracts VIII Euro-Asian Symposium «Trends in MAGnetism» EASTMAG-2022. 2022. C. 237. ISBN 978-5-94469-051-7. Текст : непосредственный.
- A10. Влияние замещения в анионной подрешетке на магнитное состояние и гистерезисные свойства интеркалированных соединений $Fe_{0.25}TaS_{2-y}Se_y$ / <u>Н.М. Топорова</u>, Е.М. Шерокалова, Н.В. Селезнева, Н.В. Баранов // Сборник трудов XXIV Международной научной конференции «Новое в Магнетизме и Магнитных Материалах». 2021. С. 95-97. Текст: непосредственный.
- А11. Особенности формирования магнитного порядка в высокоинтеркалированных соединениях Cr_xNbCh_2 (Ch=Se,Te) / <u>Н.М. Топорова</u>, Н.С. Дорошенко, Е.М. Шерокалова, Н.В. Баранов // Тезисы докладов VIII Международная молодежная научная конференция «Физика. Технологии. Инновации» ФТИ-2021. 2021. С. 328-329. ISBN 978-5-8295-0769-5. Текст: непосредственный.
- А12. Magnetic hardness of iron-containing tantalum dichalcogenides / N.M. Toporova, N.V. Selezneva, N.V. Baranov // Тезисы докладов VII Международной молодежной научной конференции, посвященной 100-летию Уральского федерального университета «Физика. Технологии. Инновации. ФТИ-2020». 2020. С. 358-359. Текст: непосредственный.
- А13. Кристаллическая структура и физические свойства дихалькогенидов ниобия, интеркалированных хромом / Н.М. Топорова, Е.М. Шерокалова, Н.В. Баранов // Материалы X Всероссийской молодежной научной конференции «Минералы: строение, свойства, методы исследования». 2019. С. 245-246. Текст: непосредственный.
- А14. Особенности формирования магнитных моментов хрома и магнитного упорядочения в интеркалированных соединениях $Cr_xNbTe_2/$ <u>Н.М. Топорова</u>, Е.М. Шерокалова, Н.В. Селезнева, Н.В. Баранов // Сборник докладов 22-го Международного междисциплинарного симпозиума "Порядок, беспорядок и свойства оксидов". 2019. С. 188-190. ISBN 978-5-9071-2594-0. Текст : непосредственный.
- A15. $Cr_{1/3}NbX_2$ compounds (X=S, Se, Te) with quasi two-dimensional structure: evolution from spiral magnetic structure to cluster-glass magnetic state / N.M. Toporova, E.M. Sherokalova, N.V. Baranov // Book of abstracts VII Euro-Asian Symposium «Trends in MAGnetism» EASTMAG-2019. 2019. C. 585. ISBN 978-5-9500855-7-4. Текст: непосредственный.

