На правах рукописи

Валова-Захаревская Евгения Григорьевна

СТРУКТУРА СВЕРХПРОВОДЯЩИХ СЛОЕВ И ТОКОНЕСУЩАЯ СПОСОБНОСТЬ КОМПОЗИТОВ НА ОСНОВЕ Nb₃Sn, ИЗГОТОВЛЕННЫХ ПО БРОНЗОВОЙ ТЕХНОЛОГИИ И МЕТОДОМ ВНУТРЕННЕГО ИСТОЧНИКА ОЛОВА

Специальность: 1.3.8. Физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Диссертационная работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН).

Научный Попова Елена Нахимовна, доктор технических наук, ведущий научный руководитель: сотрудник лаборатории прецизионных сплавов и интерметаллидов ФГБУН Институт физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН), г. Екатеринбург.

Официальные Овчинников Владимир Владимирович, доктор физикооппоненты: математических наук, профессор, главный научный сотрудник лаборатории пучковых воздействий, ФГБУН Институт электрофизики Уральского отделения Российской академии наук (ИЭФ УрО РАН), г. Екатеринбург.

> **Пугачева Наталия Борисовна**, доктор технических наук, доцент, главный научный сотрудник лаборатории микромеханики материалов ФГБУН Институт машиноведения имени Э.С. Горкунова Уральского отделения Российской академии наук, г. Екатеринбург.

Ведущая Федеральное государственное автономное образовательное учреждение
 организация: высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина», г. Екатеринбург.

Защита состоится «18» октября 2024 г. в 14:00 на заседании диссертационного совета 24.1.133.01 на базе ФГБУН Института физики металлов им. М.Н. Михеева УрО РАН по адресу: 620108, г. Екатеринбург, ул. Софьи Ковалевской, 18.

С диссертацией можно ознакомиться в библиотеке ИФМ УрО РАН и на сайте www.imp.uran.ru.

Автореферат разослан _____ 2024 г.

Ученый секретарь диссертационного совета, доктор физико-математических наук

Чарикова Татьяна Борисовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы исследования.

Современные научные задачи порождают ряд требований к материалам, использующимся для создания научных установок. В новейших ускорителях частиц для физики высоких энергий, в токамаках для физики плазмы, в установках ядерного магнитного резонанса для молекулярной биологии используются сильные магнитные поля. Эти поля генерируются с помощью соленоидов на основе сверхпроводящих проводов. Материалы для таких установок должны обладать высокими и стабильными характеристиками, технологичностью производства и быть коммерчески привлекательными.

В уникальном проекте Интернационального термоядерного экспериментального реактора (ИТЭР) в катушках тороидального поля и центрального соленоида используются многоволоконные проводники на основе Nb₃Sn, в том числе изготовленные в России. Для реакторов термоядерного синтеза нового поколения требуется создание сверхпроводников с увеличенной токонесущей способностью для получения полей 16 Тл. В проекте модернизации Большого адронного коллайдера с целью увеличения светимости и в масштабном проекте создания Кольцевого коллайдера будущего также запланировано использовать сверхпроводящие соленоиды на основе Nb₃Sn.

Основной сложностью изготовления сверхпроводников на основе Nb₃Sn для этих проектов является достижение повышенной критической плотности тока при высоком уровне стабильности. При любом способе изготовления сверхпроводников на основе Nb₃Sn исследователи стремятся получить максимально высокие характеристики, определяющиеся, прежде всего, структурой сверхпроводящих слоёв, в которых границы зёрен служат основными центрами пиннинга магнитного потока. Именно поэтому для повышения критической плотности тока необходимо увеличивать площадь границ зёрен, т.е. измельчать зерно в сверхпроводящих слоях. Кроме того, токонесущая способность многоволоконных проводников определяется количеством сверхпроводящей фазы, то есть глубиной проработки исходных ниобиевых волокон, а также её качеством, то есть близостью состава фазы Nb₃Sn к стехиометрии, и внутренней структурой сверхпроводящих слоёв (морфологией, средним размером зерна, равномерностью распределения зёрен по размерам).

Для обеспечения оптимального комплекса свойств и достижения максимально возможной токонесущей способности требуется усовершенствовать конструкцию композиционных проводников, подбирать варианты легирования и оптимизировать режимы диффузионных отжигов.

Таким образом, существует потребность разработки научной основы для дальнейшего усовершенствования структуры и свойств сверхпроводящих композитов на основе Nb₃Sn.

Цель работы — определить влияние легирования и режимов отжига на структуру сверхпроводящих слоёв в композитах разной конструкции и построить модель, связывающую объёмную долю зёрен равноосной морфологии и статистическое распределение зёрен по размерам с максимально достижимой силой пиннинга в композитах на основе Nb₃Sn.

Для достижения поставленной цели решались следующие задачи:

1. Определить объёмную долю равноосной сверхпроводящей фазы, средний размер и статистическое распределение зёрен Nb₃Sn по размерам в композитах разной конструкции в зависимости от легирования и режима отжига.

2. Установить кинетику формирования сверхпроводящих слоёв Nb₃Sn при реакционной диффузии между ниобиевыми волокнами и бронзовой матрицей в стрендах, изготовленных по «бронзовой» технологии, со спаренными Nb волокнами.

3. Предложить количественный параметр, характеризующий максимальную токонесущую способность сверхпроводящих композитов на основе Nb₃Sn в сильных магнитных полях и рассчитываемый из объёмной доли равноосных зёрен сверхпроводящей фазы, размеров зёрен и их статистического распределения.

В качестве объектов исследования выбраны сверхпроводящие композиты на основе интерметаллида Nb₃Sn разной конструкции, изготовленные по «бронзовой» технологии и методу внутреннего источника олова.

Методологические основы исследования. Исследованные в работе сверхпроводящие композиты на основе Nb₃Sn, а также их режимы отжигов были разработаны и выполнены в AO «ВНИИНМ им. Ак. Бочвара», там же проведены измерения токовых характеристик — критических токов и критических плотностей тока. Основными методами характеризации структуры выбраны просвечивающая электронная микроскопия, сканирующая электронная микроскопия и микрорентгеноспектральный анализ. Статистическая обработка результатов анализа структурных параметров выполнена с применением программы SIAMS-600.

Основные положения, выносимые на защиту:

1. Максимальные значения критического тока достигаются при определенной объёмной доле и размерах равноосных зёрен сверхпроводящей фазы Nb₃Sn, получаемых в результате оптимальных вариантов диффузионного отжига и легирования.

2. Кинетика формирования сверхпроводящих слоёв в стрендах, изготовленных по «бронзовой» технологии, позволяет получить одинаково эффективную структуру в интервале температур 575–650 °C при длительности диффузионного отжига 10–100 ч.

3. Рассчитываемый из экспоненциальной зависимости силы пиннинга, статистического распределения размеров зёрен равноосной сверхпроводящей фазы и её объёмной доли новый количественный параметр характеризует максимальную токонесущую способность многоволоконных сверхпроводников в сильных магнитных полях.

Научная новизна

Установлена кинетика формирования сверхпроводящих слоёв в промышленных сверхпроводниках для ИТЭР, изготовленных по бронзовой технологии, со спаренными ниобиевыми волокнами. Показано, что в исследованном диапазоне параметров диффузионного отжига температура в большей степени влияет на структуру и скорость формирования сверхпроводящего слоя Nb₃Sn, чем его длительность.

Обнаружено, что сверхпроводники на основе Nb₃Sn имеют константу материала $\delta = 175$ нм, названную характеристической глубиной, на которой происходит экспоненциальное уменьшение плотности силы пиннинга. В поликристаллическом сверхпроводнике это расстояние отсчитывается от межзёренных границ сверхпроводящей фазы.

Впервые предложен количественный параметр, связывающий статистическое распределение зёрен по размерам и объёмную долю равноосной сверхпроводящей фазы Nb₃Sn в стренде с максимальной токонесущей способностью этого стренда в сильных магнитных полях.

Научная и практическая значимость

Установлено, что сокращение длительности диффузионного отжига промышленных сверхпроводников с 350 до 200 ч обеспечивает увеличение количества равноосной фазы Nb₃Sn и меньший размер зёрен этой фазы. В дополнение к этому, сокращение длительности отжига экономически выгодно, а также уменьшает риск неконтролируемой диффузии олова через диффузионный барьер в наружную медную оболочку.

Предложенный в диссертации коэффициент эффективности стрендов K_{eff} позволяет ранжировать сверхпроводники по их качеству, исходя из их структуры, что допускает не проводить измерения критических токов в сильных магнитных полях при низких температурах.

Достоверность полученных в работе результатов обеспечивается их устойчивой воспроизводимостью, использованием аттестованных измерительных приборов и экспериментальных установок, аттестованных методик измерений и методов обработки экспериментальных данных, в том числе, в Центре коллективного пользования ИФМ УрО РАН г. Екатеринбург (Россия). В данной работе было проведено комплексное исследование сверхпроводящих композитов методами просвечивающей и сканирующей электронной микроскопии, что позволило получить результаты, согласующиеся с современными научными представлениями.

Соответствие паспорту специальности. Содержание диссертации соответствует пункту 1 «Теоретическое и экспериментальное изучение физической природы и свойств

неорганических и органических соединений как в кристаллическом (моно- и поликристаллы), так и в аморфном состоянии, в том числе композитов и гетероструктур, в зависимости от их химического, изотопного состава, температуры и давления» и пункту 6 «Разработка экспериментальных методов изучения физических свойств и создание физических основ промышленной технологии получения материалов с определенными свойствами» Паспорта специальности 1.3.8. Физика конденсированного состояния.

Апробация результатов. Материалы диссертации докладывались на многочисленных российских и международных конференциях: Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (2009, 2010, 2011, 2012, 2015, 2016, 2017 гг.); Научно-техническая школа-семинар по ядерным технологиям для молодых ученых, 2017); студентов И аспирантов (Екатеринбург, Курчатовская специалистов, междисциплинарная молодежная научная школа (2016, 2017); 6-я школа «Метрология и стандартизация в нанотехнологиях и наноиндустрии» (Екатеринбург, 2013); VIII Сибирский семинар по высокотемпературной сверхпроводимости и смежным проблемам (Красноярск, 2010); XXVI конференция по электронной микроскопии и 4-я Школа молодых ученых «Современные методы электронной и зондовой микроскопии в исследованиях наноструктур и наноматериалов» (Зеленоград, 2016); III Национальная конференция по прикладной сверхпроводимости (Москва, 2015); XXXVII Совещание по физике низких температур (Казань, 2015); XIII Дислокационная структура и механические свойства металлов и сплавов (Екатеринбург, 2014); European Conference on Applied Superconductivity (2015, 2017 гг.); 28th International Conference on Low Temperature Physics (Гётеборг, Швеция, 2017); International Conference on Diffusion in Solids and Liquids (Мадрид, Испания, 2013; Париж, Франция, 2014; Амстердам, Нидерланды, 2018); International Conference on Diffusion in Materials (Хайфа, Израиль, 2017).

Исследования были выполнены в рамках государственных заданий по темам «Кристалл» («Структура и свойства поли- и монокристаллических материалов для массивные, электроэнергетики: пленочные И композитные сверхпроводники И конструкционные сплавы на основе никеля, меди и железа», г. р. № 01201463330) и «Давление» («Влияние давления, деформации и термической обработки на структуру, физико-механические свойства фазовый состав И металлов, интерметаллидов, конструкционных и функциональных сплавов и композитов», г. р. №АААА-А18-118020190104-3) при финансовой поддержке Президиума УрО РАН (проекты № 15-17-2-11 «Получение высоких физико-механических свойств в металлах и сплавах для транспорта, энергетики и аэрокосмической техники за счёт структурных и фазовых превращений в результате воздействия большой пластической деформации, высокого давления и

температуры» и № 18-10-2-24 «Формирование в металлических и керамических материалах структурного состояния, обеспечивающего комплекс высоких физико-механических свойств, с использованием пластической деформации в условиях квазистационарного давления») и РФФИ (проект № 16-33-430 «Изучение зависимости скорости роста и морфологии зёрен сверхпроводящего слоя Nb₃Sn»).

Личный вклад автора. Все результаты, приведенные в диссертации, получены либо самим автором, либо при его непосредственном участии под руководством научного руководителя в.н.с. д.т.н. Е.Н. Поповой. Постановка задач исследования проводилась диссертантом совместно с научным руководителем д.т.н., в.н.с. Е.Н. Поповой. Автором лично проведена обработка электронно-микроскопических изображений структуры и расчёт электронограмм всех исследованных материалов; выполнен анализ геометрических параметров сверхпроводящих слоёв Nb₃Sn и их зёренной структуры, произведена статистическая обработка полученных результатов.

Нелинейный регрессионный анализ экспериментальных данных зависимости максимальной плотности силы пиннинга от среднего размера зерна Nb₃Sn в сверхпроводящих композитах проводился диссертантом совместно с к.ф.-м.н., с.н.с. Е.Ф Таланцевым.

Автор участвовала в подготовке образцов для просвечивающей и сканирующей электронной микроскопии (совместно с д.т.н., в.н.с. Е.Н. Поповой и к.т.н., с.н.с. И.Л. Дерягиной) и в работе на микроскопах (совместно с д.т.н., в.н.с. Е.Н. Поповой, н.с. Н.В. Николаевой, к.т.н., с.н.с. И.Л. Дерягиной и к.х.н., с.н.с. Е.И. Патраковым).

Изготовление композитов и измерение их электрических характеристик проведены в АО «ВНИИНМ им. ак. Бочвара».

Кроме того, автор принимала участие в обсуждении полученных результатов, написании статей и тезисов докладов, выступала на российских и международных конференциях с устными и стендовыми докладами.

Публикации по результатам работы. Основные результаты по теме диссертации изложены в 14 статьях в рецензируемых журналах, включённых в Перечень ВАК и индексируемых в базах научных публикаций РИНЦ, Web of Science и Scopus [A1 – A14].

Структура и объём работы. Диссертация состоит из введения, четырёх глав, заключения и списка цитируемой литературы.

Общий объём работы составляет 135 страниц, в том числе 92 рисунка и 16 таблиц. Список литературы содержит 111 наименований.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертационной работы, сформулированы цель и задачи исследования, представлены выносимые на защиту научные положения, показана научная новизна и практическая значимость результатов исследования, их апробация и степень достоверности, а также указан личный вклад автора.

В первой главе приведен обзор литературных источников, посвященных экспериментальному исследованию сверхпроводящих композитов на основе интерметаллида Nb₃Sn. Особое внимание уделено описанию микроструктуры и кинетики формирования сверхпроводящих слоёв Nb₃Sn. Сформулирована постановка задачи.

Во второй главе описаны экспериментальные методы, использованные при проведении исследования, а также приведены характеристики исследованных сверхпроводящих композитов.

В третьей главе рассмотрена структура сверхпроводящей фазы Nb₃Sn в композитах разной конструкции в зависимости от легирования и режима отжига.

В работе исследовано влияние режимов диффузионного отжига на морфологию и структуру слоёв Nb₃Sn в композитах с кольцевыми Nb волокнами (рисунок 1). Это бронзовый метод, а использование трубок ниобия вместо сплошных волокон в конструкции композита позволяет снизить путь диффузии олова, поскольку олово идет с двух сторон — снаружи и изнутри.

Рисунок 1 — Поперечные сечения композита с кольцевыми волокнами: а — общий вид; б — периферийный стренд; в — кольцевое Nb волокно с зёрнами Nb₃Sn (излом)

Эти композиты подвергались различным режимам диффузионного отжига, приведенным в таблице 1, в зависимости от которых определялись параметры структуры сверхпроводящих слоев. Наиболее совершенной структурой сверхпроводящих слоёв обладают образцы К-1 и К-8, и именно они демонстрируют самые высокие значения критического тока (рисунок 2а, таблица 1). Применение двухступенчатого отжига к композитам этого дизайна привело к заметному увеличению среднего размера зерен и понижению критического тока (рисунок 2б, таблица 1). Также было установлено, что режим с повышенной длительностью и температурой отжига приводит к аномальному росту зёрен и значительному снижению критического тока (рисунок 2в, таблица 1).

Таблица 1 — Режимы диффузионного отжига, параметры распределения зёрен Nb₃Sn по размерам и критические токи *I*_c (12 Тл, 4.2K) композитов с кольцевыми волокнами

Шифр	Режим отжига	D _{min} —D _{max} , нм	D ср, нм	СКО, нм	Ic, A
K1	575 °C, 300 ч	20–120	55	15	101
К2	625 °С, 150 ч	25-220	67	21	95.5
К3	625 °C, 300 ч	20-150	61	19	98
К4	675 °С, 50 ч	25-320	92	26	78
К5	675 °С, 100 ч	25–450	95	32	75
К6	575 °C, 150 ч + 650 °C, 200 ч	25–230	80	23	92
К7	575 °C, 150 ч + 625 °C, 100 ч	25–250	59	19	99
K8	575 °C, 100 ч + 625 °C, 50 ч	20-220	55	17	101

 D_{min} и D_{max} — минимальный и максимальный диаметр равноосных зёрен Nb₃Sn; D_{cp} — средний размер зёрен Nb₃Sn, CKO — среднее квадратичное отклонение распределения; I_c (12 Тл, 4.2K) — критический ток.

Рисунок 1 — Структура слоя Nb₃Sn в образцах К1, отжиг 575 °C/300 ч (а); К6, отжиг 575 °C/150 ч + 650 °C/200 ч (б) и К5, отжиг 675 °C/100 ч (в)

Проведенный анализ позволил установить корреляцию между критическим током и средним размером зёрен фазы Nb₃Sn (таблица 1, рисунок 3). В свою очередь, на микроструктуру диффузионных слоёв температура отжига влияет в большей степени, чем продолжительность.

Рисунок 3 — Зависимость критического тока проводников с кольцевыми волокнами от среднего размера зёрен Nb₃Sn после разных режимов диффузионного отжига На композитах с распределёнными источниками олова (их называют ВИП-композиты, сокр. от внутреннего источника питания) установлена корреляция между структурными характеристиками сверхпроводящей фазы и получаемой критической плотностью тока. Результаты расчёта параметров структуры сверхпроводящих слоёв приведены в таблице 2, а на рисунке 4 показаны примеры изломов таких композитов.

Установлено, что максимальное значение критической плотности тока достигается в проводниках с наименьшей долей столбчатых зёрен и с самыми мелкими равноосными зёрнами Nb₃Sn с наименьшим СКО. Оптимальная структура слоёв получена в проводниках с легированной марганцем матрицей, что обеспечило самые высокие значения критической плотности тока.

Таблица 2 — Параметры структуры слоёв Nb₃Sn в композитах с распределёнными источниками олова

Образец	$J_{\rm c}, {\rm A/mm^2}$	Доля равноосных зёрен, %	D _{ср} , нм	<i>D</i> _{мин} – <i>D</i> _{макс} , нм	СКО, нм
ВИП1	2270	96	94	25–280	35
ВИП2	2280	98	96	25–260	30
ВИП3	2023	94	95	25–290	34
ВИП3*	1215	95	108	25–320	38
ВИП3**		95	130	30–400	43
ВИП4	850	86	120	30–330	39

ВИПЗ* отжигали по режиму с повышенной температурой последней ступени, у ВИПЗ** добавлена 4-я высокотемпературная ступень 700 °С, 50 ч

 $J_{\rm c}$ — критическая плотность тока; $D_{\rm cp}$ — средний размер зёрен Nb₃Sn; $D_{\rm Muh}$ и $D_{\rm Makc}$ — минимальный и максимальный диаметр равноосных зёрен Nb₃Sn; CKO — среднее квадратичное отклонение распределения.

Рисунок 2 — Изломы отдельных волокон в образцах ВИП2 (а), ВИП3 (б) и ВИП4 (в). Сплошными линиями обведены зоны столбчатых зёрен; пунктиром показаны крупные равноосные зёрна

Влияние легирования титаном на рост и структуру сверхпроводящих слоёв изучали на бронзовых композитах со спаренными ниобиевыми волокнами. Также изучался вопрос о возможности уменьшения общего времени диффузионного отжига как на первой, так и на второй ступени.

На рисунках 5 и 6 показаны примеры структуры слоя в двух композитах (с легированием волокон и легированной матрицей, соответственно) после разных режимов отжига. На рисунках 5в и 6в показана структура слоёв после стандартного двухступенчатого отжига, а на рисунках 5а,б и 6а,б — после первой и второй ступени укороченного диффузионного отжига.

Были построены гистограммы распределения зёрен по размеру в исследованных образцах после первой ступени отжига, и результаты этих исследований обобщены и приведены в таблице 3.

Рисунок 5 — Структура сверхпроводящих слоев Nb₃Sn в образце БР6 (Nb-1.55Ti/Cu-Sn): а — после первой ступени отжига 575 °C/100 ч; б — после отжига 575 °C/100 ч + 650 °C/100 ч; в — после отжига 575 °C/150 ч + 650 °C/200 ч

Рисунок 6 — Структура сверхпроводящих слоев Nb₃Sn в образце БР8 (Nb/Cu-Sn-0.24Ti): а — после первой ступени отжига 575 °C/100 ч; б — после отжига 575 °C/100 ч + 650 °C/100 ч; в — после отжига 575 °C/150 ч + 650 °C/200 ч

№ п/п	Ті, мас. %	D _{мин} – D _{макс} , нм	D _{ср} , нм	СКО, нм
БР1	—	15–72	37	8.5
БР2	1.11 в Nb	15–90	45	10.0
БР4	1.33 в Nb	20–100	45	11.2
БР5	1.51 в Nb	20–110	47	13.0
БР7	1.75 в Nb	20–150	50	13.9
БР8	0.24 в бронзе	15–100	38	9.1

Таблица 3 — Параметры распределения зёрен Nb₃Sn по размерам в композитах после первой ступени отжига 575 °C/100 ч

D — размер зёрен, СКО — среднее квадратичное отклонение распределения.

Как видно в таблице 3, наименьшие значения получены для нелегированного образца и композита с легированной бронзовой матрицей. Легирование титаном волокон приводит как к возрастанию среднего размера зерен сверхпроводящей фазы, так и к большему разбросу зерен по размеру.

Полученные после обработки снимков данные по распределению зёрен сверхпроводящей фазы Nb₃Sn по размерам после разных режимов диффузионного отжига обобщены и представлены в таблице 4.

Таблица 4 — Параметры распределения зёрен Nb₃Sn по размерам в композитах после первой ступени (575 °C/100 ч), после укороченного двухступенчатого диффузионного отжига (575 °C/100 ч + 650 °C/100 ч) и после стандартного отжига (575 °C/150 ч + 650 °C/200 ч)

				Термообработка				
№ обр.	Ті, мас. %	575 °C	С/100 ч	575 °C/ 650 °C	575 °C/100 ч + 650 °C/100 ч		/150 ч + С/200 ч	
		D ср, нм	СКО, нм	D _{ср} , нм	СКО, нм	D _{ср} , нм	СКО, нм	
БР1	-	37	9	68	19	_	—	
БРЗ	1.20 в Nb	42	12	69	19	_	_	
БР6	1.55 в Nb	48	12	72	20	79	26	
БР8	0.24 в бр.	38	9	66	18	67	21	

D_{ср} — средний размер зёрен, СКО — среднее квадратичное отклонение распределения.

После двухступенчатого отжига размеры зерен в диффузионных слоях становятся приблизительно в 1.5–2 раза больше, увеличивается также и разброс зерен по размерам. Сокращение времени двухступенчатого отжига приводит к немного меньшему среднему размеру зёрен. Скорость роста диффузионных слоёв Nb₃Sn зависит от способа легирования композита и концентрации титана. Эти различия наиболее заметны уже после первой ступени диффузионного отжига (таблица 5). Максимальная ширина слоёв Nb₃Sn после первой ступени отжига наблюдается в композите с легированной матрицей (0.24 мас. %) и в композитах с концентрацией титана 1.55–1.75 мас. % при легировании волокон. При этом с ростом

концентрации титана в ниобиевых волокнах увеличивается не только общая ширина слоев сверхпроводящей фазы, но и доля столбчатых зерен в слое, что нежелательно.

Обр.	Ті, мас. %	Ті, мас. % L, нм L _p , н		Lст, нм
БР1	—	400–700	400-600	50-150
БРЗ	1.20 в Nb	500-1000	300-400	150-250
БР6	1.55 в Nb	600–1000	300-400	300-500
БР7	1.75 в Nb	600–1200	300–400	300-600
БР8	0.24 в бр.	500-1000	400-800	50-150

Таблица 5 — Характеристики структуры композитов после первой ступени диффузионного отжига, 575 °C/100 ч (содержание титана указано в исходном состоянии, до отжига)

L — ширина слоя Nb₃Sn; L_p — ширина зоны равноосных зёрен Nb₃Sn, L_{ct} — ширина зоны столбчатых зёрен.

Применение сокращенного двухступенчатого отжига приводит к достаточно полной проработке ниобиевых волокон, особенно в проводнике с 1.55 мас. % титана в ниобиевых волокнах (таблица 6). При стандартном, более длительном диффузионном отжиге достигается незначительно более глубокая проработка ниобиевых волокон, однако увеличивается доля столбчатых зёрен.

№ Ті, мас.% L, HM L_p, HM Lct, HM 400 - 900900 - 1400 300 - 400БР1 БР3 1.20 в Nb 900 - 1400 300 - 500400 - 800БР6 1.55 в Nb 500 - 7001200 - 1500500 - 700100 - 300БР8 0.24 в бр. 900 - 1400600 - 800

Таблица 6 — Характеристики структуры композитов после укороченного двухступенчатого диффузионного отжига (содержание титана указано в исходном состоянии, до отжига)

L — ширина слоя Nb₃Sn; L_p — ширина зоны равноосных зёрен Nb₃Sn, L_{ст} — ширина зоны столбчатых зёрен.

Результаты, представленные в третьей главе, опубликованы в работах [A2, A3, A7-A14].

В четвертой главе рассмотрены кинетика формирования сверхпроводящих слоёв Nb₃Sn и токонесущая способность композитов. Для определения кинетики формирования сверхпроводящих слоёв Nb₃Sn в промышленных композитах для ИТЭР, изготовленных по бронзовой технологии, со спаренными ниобиевыми волокнами, был выбран соответствующий композит, к которому применялись отжиги с различной температурой и длительностью.

На рисунке 7 показана структура слоёв Nb₃Sn после 10-часового отжига при разных температурах, а на рисунке 8 — после отжига при 650 °C с разной длительностью. Очевидно, что и температура, и время диффузионного отжига существенно влияют на зёренную

структуру диффузионных слоёв, причем роль температуры в исследованном диапазоне значительно больше.

Рисунок 8 — Структура сверхпроводящего слоя в образцах с разным временем отжига при 650 °C: а — 10 ч (БР6-5), б — 50 ч (БР6-6), в — 100 ч (БР6-7) Результаты анализа размеров зёрен сверхпроводящего слоя получали по данным просвечивающей и сканирующей микроскопии. В первом случае исследовали изображения продольных фольг композитов. Во втором случае использовались изображения изломов композитов в поперечных сечениях. Значения среднего размера равноосных зёрен (с СКО этого значения), полученные при обработке изображений, представлены на рисунке 9.

Рисунок 9 — Средний размер зёрен Nb₃Sn в зависимости от времени отжига при разных температурах (по данным СЭМ). Вертикальные планки — СКО распределения

Как видно из представленных данных, при 750 °С даже при кратковременном отжиге в течение 10 ч средний размер равноосных зёрен значительно превышает таковой после длительного низкотемпературного отжига. Напомним, что для получения высоких токонесущих характеристик в сильных магнитных полях важны не только размеры зёрен сверхпроводящей фазы и разброс по размерам, от которых зависит количество и равномерность распределения центров пиннинга, но и концентрация атомов Sn в сверхпроводящей фазе. В крупных зёрнах содержание Sn ближе к стехиометрическому, а наименьшее количество Sn наблюдается в столбчатых зёрнах. Поэтому нужен разумный баланс между хорошей стехиометрией и достаточно мелкими размерами равноосных зёрен.

На рисунках 10 и 11 видно, что при 750 °C рост сверхпроводящего слоя происходит намного быстрее. После короткого отжига (10 ч) в образце БР6-5 (650 °C) формируются несколько более толстые слои, чем в образце БР6-2 (575 °C), но при этом в образце БР6-8 (750 °C) достигается практически полное превращение ниобия в Nb₃Sn в большинстве волокон (таблица 7). При более низких температурах, даже после 100 часов отжига, не достигается полная проработка Nb волокон, и в них присутствует остаточный ниобий, хотя при 650 °C волокон с остаточным ниобием не так много.

Taxmanamuna 9C			Время от	гжига, ч		
Temneparypa, *C	1	0	50		100	
575	БР6-2	330	БР6-3	520	БР6-4	750
650	БР6-5	470	БР6-6	590	БР6-7	910
750	БР6-8	850	БР6-9	950		

Таблица 7 — Средняя толщина слоёв Nb₃Sn, нм

Рисунок 10 — СЭМ изображения изломов Nb волокон со слоями Nb₃Sn после отжига 10 ч при разной температуре: а — 575 °C (БР6-2), б — 650 °C (БР6-5), в — при 750 °C (БР6-8)

Рисунок 11— Средняя толщина сверхпроводящего слоя Nb₃Sn в зависимости от времени и температуры отжига, планками отмечены СКО.

СКО данных, полученных в настоящей работе, очень широкое, поэтому очень сложно найти точный показатель роста толщины сверхпроводящего слоя. Тем не менее, очень грубая оценка показывает, что рост толщины слоя при 575 °C наиболее полно соответствует параболическому закону (m = 0.45). При более высоких температурах (650 °C и 750 °C) наблюдается значительное отклонение от этого закона (m = 0.35 и 0.23 соответственно).

Для построения модели взаимосвязи структуры сверхпроводящих композитов с силой пиннинга были проанализированы имеющиеся в литературе данные. Традиционный подход к представлению зависимости максимальной плотности силы пиннинга ($F_{p,max}$) от размера зерна Nb₃Sn (*d*) заключается в использовании обратного полулогарифмического графика и описанию указанной зависимости с помощью логарифмической функции, представленной ниже:

$$F_{p,max}(d) = A \times ln(1/d) + B, \tag{1}$$

где свободные параметры A = 22.7 и B = -10.

Однако, с этой моделью связаны как минимум три фундаментальные проблемы:

- Логарифмическая функция может работать только с безразмерной переменной, тогда как переменная в этом уравнении имеет размерность, обратную длине.
- Две другие проблемы связаны с пределами уравнения для больших и малых размеров зерна, некорректных с физической точки зрения:

$$\left|F_{p,max}(d)\right|_{d \ge D = 650 \text{ nm}} = |(A \times ln(1/d) + B)|_{d \ge D = 650 \text{ nm}} \le 0,$$
(2)

$$\lim_{d \to 0} \left| F_{p,max}(d) \right| = \lim_{d \to 0} \left(A \times \ln\left(\frac{1}{d}\right) + B \right) = \infty.$$
⁽³⁾

В экспериментах со многими функциями, для описания зависимости плотности силы пиннинга от размера зерна *F*_{p,max}(*d*), найдено простое и физически обоснованное выражение:

$$\left|F_{p,max}(d)\right| = \left|F_{p,max}(0)\right| \times e^{-\frac{d}{\delta}},\tag{4}$$

где $|F_{p,max}(0)|$ и δ — свободные параметры. Эта экспоненциальная функция демонстрирует физически обоснованные пределы:

$$\lim_{d \to \infty} \left| F_{p,max}(d) \right| = \lim_{d \to \infty} \left(\left| F_{p,max}(0) \right| \times e^{-\frac{d}{\delta}} \right) = 0 , \qquad (5)$$

$$\lim_{d\to 0} \left| F_{p,max}(d) \right| = \lim_{d\to 0} \left(\left| F_{p,max}(0) \right| \times e^{-\frac{d}{\delta}} \right) = \left| F_{p,max}(0) \right| < \infty .$$
⁽⁶⁾

В работе показана применимость нового уравнения для имеющихся в литературе наборов данных для сверхпроводников на основе Nb₃Sn, изготовленных по бронзовой технологии (рисунок 12) и методу «порошок в трубе» (рисунок 13).

Рисунок 12 — Максимальная плотность силы пиннинга $|F_{p,max}(d)|$ в зависимости от среднего размера зёрен *d* для проводников Nb₃Sn, изготовленных по бронзовой технологии, и кривая, соответствующая уравнению (4). Исходные данные взяты из работ Marken¹, West *et al*², Fischer³, Shaw⁴, Schauer *et al*⁵, и Scanlan *et al*⁶. Проводники Nb₃Sn изготовлены по бронзовой технологии. Полученные параметры $|F_{p,max}(0)| = 74 \pm 3 \frac{GN}{m^3}, \delta = 176 \pm 12$ нм; качество аппроксимации 0.9248. Доверительный интервал 95% отмечен сиреневым цветом

¹ Marken, K. R. Characterization Studies of Bronze-Process Filamentary Nb₃Sn Composites / K. R. Marken. – PhD Thesis, Wisconsin Univ., Madison, USA, 1986. – Текст : непосредственный.

² West, A. W. A transmission electron microscopy investigation of filamentary superconducting composites / A. W. West, R. D. Rawlings – Текст: непосредственный // Journal of Materials Science. – 1977. – Т. 12. – № 9. – С. 1862-1868.

³ Fischer, C. M. Investigation of the Relationships between Superconducting Properties and Nb₃Sn Reaction Conditions in Powder-in-Tube Nb₃Sn Conductors / C. M. Fischer. – Master Thesis, University of Winsconsin-Madison, 2002. – 110 с. – Текст : непосредственный.

⁴ Shaw, B. J. Grain size and film thickness of Nb₃Sn formed by solid-state diffusion in the range 650–800 °C / В. J. Shaw. – Текст : непосредственный // Journal of Applied Physics. – 1976. – Т. 47. – № 5. – С. 2143-2145.

⁵ Schauer, W. Improvement of Nb₃Sn high field critical current by a two-stage reaction / W. Schauer, W. Schelb. – Текст : непосредственный // IEEE Transactions on Magnetics. – 1981. – Т. 17. – № 1. – С. 374-377.

⁶ Scanlan, R. M. Flux pinning centers in superconducting Nb₃Sn / R. M. Scanlan, W. A. Fietz, E. F. Koch. – Текст : непосредственный // Journal of Applied Physics. – 1975. – Т. 46. – № 5. – С. 2244-2249.

Рисунок 13 — Максимальная плотность силы пиннинга $|F_{p,max}(d)|$ в зависимости от среднего размера зёрен d для проводников Nb₃Sn, изготовленных по методу «порошок в трубе», и кривая, соответствующая уравнению (4) для слоёв Nb₃Sn в проводниках, изготовленных по методу «порошок в трубе». Исходные данные взяты из работ Fischer⁷ и Xu *et al*⁸. Полученные параметры $|F_{p,max}(0)| = 189 \pm 11 \frac{\text{GN}}{\text{m}^3}$, $\delta = 175 \pm 13$ нм; качество аппроксимации 0.9093. Доверительный интервал 95% отмечен голубым цветом

Обнаружено, что параметр δ одинаков для разных технологий изготовления, следовательно, он является константой материала Nb₃Sn. По сути, он является расстоянием, на котором происходит экспоненциальное уменьшение плотности силы пиннинга, поэтому в работе он назван характеристической глубиной.

В результате создания модели, финальное уравнение для максимальной плотности силы пиннинга в стренде, полученное в данной диссертации, имеет следующий вид:

$$F_{\rm p,max} = F_{\rm p,max}(0) \times K_{\rm eff},\tag{7}$$

где

$$K_{\rm eff} = \frac{G \times S_{\rm filament,eq}}{S_{\rm wire}} \times \frac{\sum_{i=1}^{N} e^{-\frac{d_i}{\delta}} \times \left(\sum_{j=1}^{M_i} \frac{\pi d_{ij}^2}{4}\right)}{\sum_{i=1}^{N} \sum_{j=1}^{M_i} \frac{\pi d_{ij}^2}{4}}$$
(8)

является коэффициентом эффективности стренда. Этот коэффициент, в свою очередь, раскладывается на два множителя:

$$K_{\rm eff} = k_{\rm s,eq} \times K_{\rm eff,Nb3Sn},\tag{9}$$

где

$$k_{\rm S,eq} = \frac{G \times S_{\rm filament,eq}}{S_{\rm wire}} = \frac{S_{\rm wire,eq}}{S_{\rm wire}}$$
(10)

⁷ Fischer, C. M. Investigation of the Relationships between Superconducting Properties and Nb₃Sn Reaction Conditions in Powder-in-Tube Nb₃Sn Conductors / C. M. Fischer. – Master Thesis, University of Winsconsin-Madison, 2002. – 110 с. – Текст : непосредственный.

⁸ Xu, X. Internally oxidized Nb₃Sn strands with fine grain size and high critical current density / X. Xu, M. D. Sumption, X. Peng – Текст : непосредственный // Advanced Materials. – 2015. – Т. 27. – № 8. – С. 1346-1350.

является коэффициентом удельной доли равноосной фазы в стренде, этот коэффициент зависит от конструкции композита, а

$$K_{\rm eff,Nb3Sn} = \frac{\sum_{i=1}^{N} e^{-\frac{d_i}{\delta}} \times \left(\sum_{j=1}^{M_i} \frac{\pi d_{ij}^2}{4} \right)}{\sum_{i=1}^{N} \sum_{j=1}^{M_i} \frac{\pi d_{ij}^2}{4}}$$
(11)

является коэффициентом эффективности равноосной фазы Nb₃Sn, который зависит от доли в равноосной фазе Nb₃Sn зёрен разного размера.

В данной модели $|F_{p,max}(0)|$ является максимально достижимым значением плотности силы пиннинга для данного сверхпроводящего материала при размере зёрен, стремящемся к 0. На коэффициент эффективности стренда K_{eff} влияет конструкция композита, температура и длительность диффузионного отжига, способ легирования и количество легирующего элемента.

Фундаментальным свойством полученного уравнения является то, что коэффициент эффективности стренда *K*_{eff} рассчитывается исключительно из данных, полученных в ходе микроскопических исследований, а сверхпроводящие свойства описаны множителем– константой. Таким образом, в работе нам удалось связать электронные свойства (в частности, сверхпроводящий пиннинг магнитного потока) со структурой материала.

В работе показано применение этой модели для сравнения структуры после различных режимов диффузионного отжига с помощью коэффициента эффективности стрендов. Для бронзовых композитов со спаренными ниобиевыми волокнами в работе получено уравнение для расчёта коэффициента удельной доли равноосной сверхпроводящей фазы $k_{S,eq}$:

$$k_{S,eq} = \frac{G \times S_{\text{filament,eq}}}{S_{\text{wire}}} = \frac{G \times f_{\text{eq}} \times 4\sqrt{3} \times (2 \times L_{\text{Nb3Sn}} \times L_{\text{filament}} - L_{\text{Nb3Sn}}^2)}{S_{\text{wire}}}.$$
(12)

Величины f_{eq} , $L_{filament}$ и L_{Nb3Sn} определяются из микроскопических исследований, а S_{wire} и G закладываются при изготовлении стренда.

В таблице 8 приведены режимы отжига и рассчитанные коэффициенты для композитов, на которых изучалась кинетика формирования сверхпроводящих слоёв Nb₃Sn. Как можно видеть в таблице, композиты БP6-3 и БP6-7 имеют одинаковый $K_{eff} = 0.095$, но при этом они имеют абсолютно разную структуру волокон. Волокна композита БP6-3 содержат относительно небольшое количество образовавшейся равноосной фазы, но её зёрна имеют малые диаметры. А волокна композита БP6-7 практически не содержат остаточный ниобий, в этом стренде образуется максимальное количество равноосной сверхпроводящей фазы, но диаметры зёрен при этой термообработке в полтора раза больше (средние размеры зёрен 70 и 111 нм, соответственно). В этом смысле образец БP6-5, имеющий наивысший $K_{eff} = 0.096$, характеризуется сбалансированным сочетанием всех структурных параметров. При этом можно заметить, что образцы после диффузионного отжига при температуре 750 °C (композиты БР6-8 и БР6-9) имеют более низкие значения K_{eff} . Несмотря на большое количество образовавшейся в этих образцах фазы Nb₃Sn, она содержит не максимальную долю равноосных зёрен, а их диаметры значительно больше. Это приводит к более чем полуторакратному снижению K_{eff} .

Таблица 8 — Коэффициенты эффективности слоя Nb₃Sn K_{eff,Nb3Sn}, коэффициенты удельной доли равноосной фазы k_{S,eq} и коэффициенты эффективности стренда K_{eff} для образцов после различных режимов диффузионного отжига

Образец	<i>T</i> , ℃	<i>t</i> , ч	K _{eff,Nb3Sn}	<i>L</i> , нм	$f_{ m eq}$	k _{S,eq}	K _{eff}
БР6-2	575	10	0.822	330	0.64	0.115	0.094
БР6-3	575	50	0.635	520	0.60	0.149	0.095
БР6-4	575	100	0.516	750	0.56	0.167	0.086
БР6-5	650	10	0.643	470	0.64	0.149	0.096
БР6-6	650	50	0.566	590	0.59	0.158	0.089
БР6-7	650	100	0.460	910	0.66	0.206	0.095
БР6-8	750	10	0.324	850	0.63	0.195	0.063
БР6-9	750	50	0.278	950	0.62	0.194	0.054

T — температура отжига, °C; t — время отжига, ч; $K_{eff,Nb3Sn}$ — коэффициент эффективности слоя Nb₃Sn; L — толщина слоя Nb₃Sn, нм; f_{eq} — доля в слое равноосных зёрен; $k_{S,eq}$ — коэффициент удельной доли равноосной фазы Nb₃Sn; K_{eff} — коэффициент эффективности стренда.

На рисунке 14 представлена зависимость коэффициента эффективности стренда от температуры и времени диффузионного отжига в виде диаграммы и в виде графика для разных температур отжига.

Рисунок 14 — Зависимость коэффициента эффективности стренда K_{eff} от температуры и времени диффузионного отжига: а — диаграмма $K_{\text{eff}}(T, t)$, б — проекция $K_{\text{eff}}(t)$ для разных температур отжига

АО «ВНИИНМ им. ак. Бочвара» предоставил для исследований уже оптимизированные сверхпроводники, поэтому различия в K_{eff} не такие большие, как можно было бы ожидать. Этому способствовала огромная проведенная работа по оптимизации конструкции и режимов легирования. Эти композиты предназначены для проектов мега-саенс, и с инженерной точки зрения очень трудно осуществить равномерные и быстрые нагрев и охлаждение многотонных конструкций сверхпроводящих магнитов. Поскольку синтез сверхпроводящей фазы происходит уже после финальной сборки всего изделия при однократном нагреве, то цена ошибки чрезвычайно высока. В работе показано, что одинаково эффективная структура волокон формируется в интервале температур и длительностей отжига, достаточно широком для практического применения исследованной конструкции композитов в крупномасштабных проектах.

Предложенный в диссертации K_{eff} является легко рассчитываемым (исключительно из результатов электронно-микроскопических исследований) количественным параметром, характеризующим максимальную токонесущую способность сверхпроводящих проводов в сильных внешних магнитных полях.

Результаты, представленные в четвертой главе, опубликованы в работах [А1, А4–А6].

В заключении представлены основные результаты и выводы, полученные в работе.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

Обобщая полученный экспериментальный материал, можно выделить следующие основные результаты:

1. Определена объёмная доля равноосных зёрен сверхпроводящей фазы Nb₃Sn и построены гистограммы распределения зёрен этой фазы по размерам в композитах разного типа, на основании чего установлены параметры диффузионных отжигов и легирования, обеспечивающие высокую токонесущую способность проводников в сильных магнитных полях (12 Тл, 4.2 К).

2. Установлена кинетика формирования сверхпроводящих слоёв в стрендах, изготовленных по «бронзовой» технологии со спаренными Nb волокнами: при низкой температуре (575 °C) наблюдается параболический закон роста, показывающий, что рост слоя определяется скоростью зернограничной диффузии; при более высоких температурах (650 °C и 750 °C) наблюдается значительное отклонение от этого закона из-за увеличения размера зёрен и обеднения бронзовой матрицы по олову.

3. Предложен новый количественный параметр — коэффициент эффективности стренда K_{eff} — для аттестации токонесущей способности многоволоконных коммерческих проводов Nb₃Sn, изготовленных по различным технологиям. Данный параметр рассчитывается из объёмной доли равноосной фазы, размеров зёрен, статистического распределения зёрен по размерам, дизайна стренда и обнаруженной экспоненциальной зависимости плотности силы пиннинга от размера зёрен Nb₃Sn. Необходимо отметить, что данный параметр потенциально может применяться для аттестации многожильных коммерческих проводов, изготовленных из других сверхпроводников.

СПИСОК ПУБЛИКАЦИЙ АВТОРА

A1. Characteristic Length for Pinning Force Density in Nb₃Sn / E.F. Talantsev, E.G. Valova-Zaharevskaya, I.L. Deryagina, E.N. Popova. – Текст: непосредственный // Materials. — 2023. — V. 16. — P. 5185—5198.

A2. Effect of Intermediate Heat Treatment on the Formation and Structure of Superconducting Layers in Multifilamentary Nb₃Sn-Based Wires / E.N. Popova, I.L. Deryagina, E.G. Valova-Zaharevskaya – Текст: непосредственный // Defect and Diffusion Forum. — 2019. — V. 391. — P. 239—245.

A3. Effect of Sn Concentration in Bronze Matrix on the Pre-Reaction Formation of Nb₃Sn Layers in Bronze-Processed Superconducting Strands of Different Design / I. Deryagina, E. Popova, E. Patrakov, E. Valova-Zaharevskaya, I. Abdyukhanov, A. Tsapleva, M. Alexeev – Текст: непосредственный // IEEE Transactions on Applied Superconductivity. — 2018. — V. 28. — P. 8252722–8252726.

A4. Effect of diffusion annealing regimes on the structure of Nb₃Sn layers in ITER-type bronze-processed wires / E.G. Valova-Zaharevskaya, E.N. Popova, I.L. Deryagina, I.M. Abdyukhanov, A.S. Tsapleva. – Текст: непосредственный // Journal of Physics: Conference Series. — 2018. — V. 969. — P. 12055–12060.

A5. Growth Rate and Morphology of Nb₃Sn Layers in ITER-Type Bronze-Processed Wires Under Different Diffusion Annealing Regimes / E. Valova-Zaharevskaya, E. Popova, I. Deryagina, I. Abdyukhanov, A. Tsapleva, M. Alekseev – Текст: непосредственный // IEEE Transactions on Applied Superconductivity. — 2018. — V. 28. — P. 6001305–6001309.

Аб. Характеризация структуры сверхпроводящего слоя в процессе его формирования в композитах Nb/Cu–Sn, изготовленных по бронзовой технологии / Е.Г. Валова-Захаревская, Е.Н. Попова, И.Л. Дерягина, И.М. Абдюханов, М.О. Курилкин, А.С. Цаплева, М.В. Алексеев – Текст: непосредственный // Ядерная физика и инжиниринг. — 2017. — V. 8. — Р. 56–61.

A7. Effect of Nb₃Sn layer structure and morphology on critical current density of multifilamentary superconductors / I.L. Deryagina, E.N. Popova, E.I. Patrakov, E.G. Valova-Zaharevskaya – Текст: непосредственный // Journal of Magnetism and Magnetic Materials. — 2017. — V. 440. — P. 119–122.

A8. Structure of superconducting layers in bronze-processed and internal-tin Nb₃Sn-based wires of various designs / I. Deryagina, E. Popova, E. Patrakov, E. Valova-Zaharevskaya – Текст: непосредственный // Journal of Applied Physics. — 2017. — V. 121. — P. 233901–233908.

А9. Влияние режимов отжига на структуру сверхпроводящих слоев Nb₃Sn в композитах с внутренними источниками олова / Е.Н. Попова, И.Л. Дерягина, Е.Г. Валова-Захаревская, Е.И. Патраков – Текст: непосредственный // Физика металлов и металловедение. — 2016. — V. 117. — Р. 1063–1072.

A9a. Effect of Annealing Regimes on the Structure of Nb₃Sn Superconducting Layers in Composites with Internal Tin Sources / E.N. Popova, I.L. Deryagina, E.G. Valova-Zakharevskaya, E.I. Patrakov – Текст: непосредственный // Physics of Metals and Metallography. — 2016. — V. 117. — P. 1028–2064.

A10. Effect of Diffusion Annealing and Design of Internal Tin Wires on the Structure and Morphology of Superconducting Nb₃Sn Layers / I. Deryagina, E. Popova, E. Patrakov, E. Valova-Zaharevskaya – Текст: непосредственный // IEEE Transactions on Applied Superconductivity. — 2016. — V. 26. — P. 6000706–6000711.

A11. Morphology and Structure of Nb₃Sn Diffusion Layers in Superconductors with Tubular Nb Filaments / E.N. Popova, I.L. Deryagina, E.I. Patrakov, E.G. Valova-Zaharevskaya – Текст: непосредственный // Defect and Diffusion Forum. — 2015. — V. 364. — P. 139–146.

A12. The Nb₃Sn layers formation at diffusion annealing of Ti-doped multifilamentary Nb/Cu–Sn composites / E.N. Popova, I.L. Deryagina, E.G. Valova-Zaharevskaya – Текст: непосредственный // Cryogenics. — 2014. — V. 63. — P. 63–68.

А13. Влияние легирования и режимов диффузионного отжига на формирование нанокристаллических слоев Nb₃Sn в композитах Nb/Cu-Sn со спаренными Nb волокнами / Е.Н. Попова, И.Л. Дерягина, Е.Г. Захаревская, Е.П. Романов, Е.А. Дергунова, А.Е. Воробьева, С.М. Балаев – Текст: непосредственный // Материаловедение. — 2012. — V. 11. — P. 31–36.

А14. Влияние способа легирования и геометрии композита на структуру нанокристаллических слоев Nb₃Sn в сверхпроводящих композитах Nb/Cu-Sn / И.Л. Дерягина, Е.Н. Попова, Е.Г. Захаревская, Е.П. Романов, А.Е. Воробьева, Е.А. Дергунова, С.М. Балаев – Текст: непосредственный // Журнал Сибирского федерального университета. Серия «Математика и физика». — 2011. — V. 4. — Р. 149–161.

Отпечатано на ризографе ИФМ УрО РАН тир. 100 зак. №19 Объем 1 печ. л. Формат 60х84 1/16 620108, г. Екатеринбург, ул. С. Ковалевской, 18