4) Debye temperature, electron-phonon coupling constant, and three-dome shape of crystalline strain as a function of pressure in highly compressed La3Ni2O7−δ / E.F. Talantsev1, V.V. Chistyakov1. – Текст: непосредственный // Letters on Materials. — 2024. — V. 14. — P. 262—268.
5) The A-15-type superconducting hydride La4H23: a nanograined structure with
low strain, strong electron-phonon interaction, and a moderate level of nonadiabaticity / E.F. Talantsev2, V.V. Chistyakov2. – Текст: непосредственный // Superconductor Science and Technology. — 2024. — V. 37. — P. 95016—95035.
6) Evidences for d-wave symmetry of c-axis superconducting gap in atomically thin twisted flakes of bismuth-based HTS cuprates / E.F. Talantsev1. – Текст: непосредственный // Physica C. — 2024. — V. 623. — P. 1354549—1354556.
7) Advanced modelling tool to extract the structural state boundaries from the hardness-strain experiments / L.M. Voronova1, T.I. Chashchukhina1, E.F. Talantsev2, M.V. Degtyarev1, T.M. Gapontseva1. – Текст: непосредственный // International Journal of Refractory Metals and Hard Materials. — 2024. — V. 122. — P. 106719—106728.
8) In-Field Transport Critical Currents in Superhydride Superconductors: Highly-Compressed CeH9 / E.F. Talantsev2. – Текст: непосредственный // IEEE Transactions on Applied Superconductivity. — 2024. — V. 34. — P. 7400304—7400307.
9) Erratum: “The electron–phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase III” [J. Appl. Phys. 130(19), 195901 (2021)] / E. F. Talantsev1. – Текст: непосредственный // Journal of Applied Physics. — 2023. — V. 134. — P. 179901—179901.
10) Quantifying interaction mechanism in infinite layer nickelate superconductors / E. F. Talantsev2. – Текст: непосредственный // Journal of Applied Physics. — 2023. — V. 134. — P. 113904—113919.
11) Magnetic flux trapping in hydrogen-rich high-temperature superconductors / V.S. Minkov0, V. Ksenofontov0, S.L. Bud’ko0, E.F. Talantsev2, M.I. Eremets0. – Текст: непосредственный // Nature Physics. — 2023. — V. 19. — P. 1293—1300.
12) Quantifying the Nonadiabaticity Strength Constant in Recently Discovered Highly Compressed Superconductors / E.F. Talantsev2. – Текст: непосредственный // Symmetry. — 2023. — V. 15. — P. 1632—1650.
13) Characteristic Length for Pinning Force Density in Nb3Sn / E.F. Talantsev2, E.G. Valova-Zaharevskaya1, I.L. Deryagina1, E.N. Popova1. – Текст: непосредственный // Materials. — 2023. — V. 16. — P. 5185—5198.
14) Intrinsic coherence length anisotropy in nickelates and some iron-based superconductors / E.F. Talantsev2. – Текст: непосредственный // Materials. — 2023. — V. 16. — P. 4367—4387.
15) D-Wave Superconducting Gap Symmetry as a Model for Nb1−xMoxB2 (x = 0.25; 1.0) and WB2 Diborides / E. F. Talantsev2. – Текст: непосредственный // Symmetry. — 2023. — V. 15. — P. 812—831.
16) Quantifying Nonadiabaticity in Major Families of Superconductors / E.F. Talantsev2. – Текст: непосредственный // Nanomaterials . — 2023. — V. 13. — P. 71—84.
17) The Compliance of the Upper Critical Field in Magic-Angle Multilayer Graphene with the Pauli Limit / E.F. Talantsev1. – Текст: непосредственный // Materials. — 2023. — V. 16. — P. 256—268.
18) New Scaling Laws for Pinning Force Density in Superconductors / E.F. Talantsev1. – Текст: непосредственный // Condensed Matter. — 2022. — V. 7. — P. 74—105.
19) Fermi-Liquid Nonadiabatic Highly Compressed Cesium Iodide Superconductor / E. F. Talantsev1. – Текст: непосредственный // Condensed Matter. — 2022. — V. 7. — P. 65—74.
20) Corrigendum: Thermodynamic parameters of atomically thin superconductors derived from the upper critical field (2022 Supercond. Sci. Technol. 35 084007) / E.F. Talantsev1. – Текст: непосредственный // Superconductor Science and Technology. — 2022. — V. 35. — P. 99501—99502.
21) Universal Fermi velocity in highly compressed hydride superconductors / E.F. Talantsev2. – Текст: непосредственный // Matter and Radiation at Extremes. — 2022. — V. 7. — P. 58403—58410.
22) Electron–phonon coupling constant and BCS ratios in LaH10−y doped with magnetic rare-earth element / E.F. Talantsev2. – Текст: непосредственный // Superconductor Science and Technology. — 2022. — V. 35. — P. 95008—95013.
23) Thermodynamic parameters of atomically thin superconductors derived from the upper critical field / E.F. Talantsev1. – Текст: непосредственный // Superconductor Science and Technology. — 2022. — V. 35. — P. 84007—84019.
24) Method to extracting the penetration field in superconductors from DC magnetization data / E.F. Talantsev1. – Текст: непосредственный // Review of Scientific Instruments. — 2022. — V. 93. — P. 53912—53926.
25) A disorder-sensitive emergent vortex phase identified in high-Tc superconductor (Li,Fe)OHFeSe / D. Li0, P. Shen0, J. Tian0, G. He0, S. Ni0, Z. Wang0, C. Xi0, L. Pi0, H. Zhang0, J. Yuan0, K. Jin0, E.F. Talantsev2, L. Yu1, F. Zhou0, J. Hänisch0, X. Dong0, Z. Zhao0. – Текст: непосредственный // Superconductor Science and Technology. — 2022. — V. 35. — P. 64007—64013.
26) Classifying Charge Carrier Interaction in Highly Compressed Elements and Silane / E.F. Talantsev2. – Текст: непосредственный // Materials. — 2021. — V. 14. — P. 4322—4332.
27) The electron-phonon coupling constant, Fermi temperature and unconventional superconductivity in the carbonaceous sulfur hydride 190 K superconductor / E.F. Talantsev2. – Текст: непосредственный // Superconductor Science and Technology. — 2021. — V. 34. — P. 34001—34007.
28) Resistive transition of hydrogen-rich superconductors / E.F. Talantsev2, K. Stolze0. – Текст: непосредственный // Superconductor Science and Technology. — 2021. — V. 34. — P. 64001—64014.
29) Quantifying the Charge Carrier Interaction in Metallic Twisted Bilayer Graphene Superlattices / Evgueni F. Talantsev2. – Текст: непосредственный // Nanomaterials . — 2021. — V. 11. — P. 1306—1320.
30) Superconductivity emerging from a stripe charge order in IrTe2 nanoflakes / S. Park0, S.Y. Kim0, H.K. Kim0, M.J. Kim0, T. Kim0, H. Kim0, G.S. Choi0, C. J. Won0, S. Kim0, K. Kim0, E.F. Talantsev2, K. Watanabe0, T. Taniguchi0, S.-W. Cheong0, B.J. Kim0, H.W. Yeom0, J. Kim0, T.-H. Kim0, J.S. Kim0. – Текст: непосредственный // Nature Communications. — 2021. — V. 12. — P. 3157—3164.
31) Comparison of highly-compressed C2/m-SnH12 superhydride with conventional superconductors / E.F. Talantsev2. – Текст: непосредственный // Journal of Physics: Condensed Matter. — 2021. — V. 33. — P. 285601—285609.
32) Cooper pair trajectories in superconducting slab at self-field conditions / E.F. Talantsev2, R.C. Mataira0. – Текст: непосредственный // Modern Physics Letters B. — 2021. — V. 35. — P. 2150226—2150233.
33) Piecewise Model with Two Overlapped Stages for Structure Formation and Hardening upon High-Pressure Torsion / E.F. Talantsev1, M.V. Degtyarev1, T.I. Chashchukhina1, L.M. Voronova1, V.P. Pilyugin1. – Текст: непосредственный // Metallurgical and Materials Transaction A. — 2021. — V. 52. — P. 4510—4517.
34) The dominance of non-electron–phonon charge carrier interaction in highly-compressed superhydrides / E.F. Talantsev2. – Текст: непосредственный // Superconductor Science and Technology. — 2021. — V. 34. — P. 115001—115016.
35) The electron–phonon coupling constant and the Debye temperature in polyhydrides of thorium, hexadeuteride of yttrium, and metallic hydrogen phase III / E.F. Talantsev2. – Текст: непосредственный // Journal of Applied Physics. — 2021. — V. 130. — P. 195901—195913.
36) Advanced McMillan's equation and its application for the analysis of highly-compressed superconductors / E.F. Talantsev2. – Текст: непосредственный // Superconductor Science and Technology. — 2020. — V. 33. — P. 94009—94031.
37) Classifying superconductivity in ThH-ThD superhydrides/superdeuterides / E.F. Talantsev2, R.C. Mataira0. – Текст: непосредственный // Materials Research Express. — 2020. — V. 7. — P. 16003—16010.
38) Unconventional superconductivity in highly-compressed unannealed sulphur hydride / E.F. Talantsev1. – Текст: непосредственный // Results in Physics. — 2020. — V. 16. — P. 1029932—1029935.
39) Classifying superconductivity in an infinite-layer nickelate Nd0.8Sr0.2NiO2 / E.F. Talantsev2. – Текст: непосредственный // Results in Physics. — 2020. — V. 17. — P. 103118—103122.
40) In-plane p-wave coherence length in iron-based superconductors / E. F. Talantsev2. – Текст: непосредственный // Results in Physics. — 2020. — V. 18. — P. 103339—103348.
41) Anisotropy of flux pinning properties in superconducting (Li,Fe)OHFeSe
thin films / J. Haenisch0, Y. Huang0, D. Li0, J. Yuan0, K. Jin0, X. Dong0, E. Talantsev2, B. Holzapfel0, Z. Zhao0. – Текст: непосредственный // Superconductor Science and Technology. — 2020. — V. 33. — P. 114009—114016.
42) An approach to identifying unconventional superconductivity in highly-compressed superconductors / E.F. Talantsev2. – Текст: непосредственный // Superconductor Science and Technology. — 2020. — V. 33. — P. 124001—124011.
43) Double-valued strong-coupling corrections to Bardeen–Cooper–Schrieffer ratios / E.F. Talantsev2. – Текст: непосредственный // Superconductor Science and Technology. — 2020. — V. 33. — P. 124003—124012.
44) Classifying superconductivity in Moiré graphene superlattices / E.F. Talantsev2, R.C. Mataira0, W.P Crump0. – Текст: непосредственный // Scientific Reports. — 2020. — V. 10. — P. 212—226.
45) DC Self-Field Critical Current in Superconductor/Dirac-Cone Material/Superconductor Junctions / E.F. Talantsev2. – Текст: непосредственный // Nanomaterials . — 2019. — V. 9. — P. 1554—1568.
46) The onset of dissipation in high-temperature superconductors: flux trap, hysteresis and in-field performance of multifilamentary Bi2Sr2Ca2Cu3O10+x wires / E.F. Talantsev2, J. Brooks0. – Текст: непосредственный // Materials Research Express. — 2019. — V. 6. — P. 26002—26011.
47) Normal state interlayer conductivity in epitaxial Nd2–xCexCuO4 films deposited on SrTiO3 (110) single crystal substrates / M.R. Popov1, A.S. Klepikova1, T.B. Charikova2, E.F. Talantsev2, N.G. Shelushinina1, A.A. Ivanov0. – Текст: непосредственный // Materials Research Express. — 2019. — V. 6. — P. 96005—96011.
48) Classifying hydrogen-rich superconductors / E.F. Talantsev2. – Текст: непосредственный // Materials Research Express. — 2019. — V. 6. — P. 106002—106013.
49) Classifying Induced Superconductivity in Atomically Thin Dirac-Cone Materials / Evgueni F. Talantsev2. – Текст: непосредственный // Condensed Matter. — 2019. — V. 4. — P. 83—98.
50) p-wave superconductivity in iron-based superconductors / E. F. Talantsev2, K. Iida0, T. Ohmura0, T. Matsumoto0, W. P. Crump0, N. M. Strickland0, S. C. Wimbush & H. Ikuta0. – Текст: непосредственный // Scientific Reports. — 2019. — V. 9. — P. 14245—14257.
51) Angular dependence of the upper critical field in randomly restacked 2D superconducting nanosheets / E F Talantsev2. – Текст: непосредственный // Superconductor Science and Technology. — 2019. — V. 32. — P. 15013—15017.
52) Classifying superconductivity in compressed H3S / E.F. Talantsev2. – Текст: непосредственный // Modern Physics Letters B. — 2019. — V. 33. — P. 1950195—1950209.
53) Evaluation of a practical level of critical current densities in pnictides and recently discovered superconductors / E.F. Talantsev2. – Текст: непосредственный // Superconductor Science and Technology. — 2019. — V. 32. — P. 84007—84020.
54) The onset of dissipation in high-temperature superconductors: magnetic hysteresis and field dependence / E. F. Talantsev2, N. M. Strickland0, S. C. Wimbush0, J. Brooks0, A. E. Pantoja0, R. A. Badcock0, J. G. Storey0, J. L. Tallon0. – Текст: непосредственный // Scientific Reports. — 2018. — V. 8. — P. 14463—14476.
55) Формирование упорядоченной структуры в сплаве 40Au-25.4Pd-34.6Cu / А.Ю. Волков1, Е.Ф. Таланцев3, О.С. Новикова1, А.В. Глухов2, К.Н. Генералова0, Б.Д. Антонов0. – Текст: непосредственный // Физика металлов и металловедение. — 2018. — V. 119. — P. 1286—1292.
56) Formation of an ordered structure in the 40Au-25.5Pd-34.6Cu alloy / A.Yu. Volkov1, E.F. Talantsev3, O.S. Novikova1, A.V. Glukhov2, K.N. Generalova0, B.D. Antonov0. – Текст: непосредственный // Physics of Metals and Metallography. — 2018. — V. 119. — P. 1222—1228.
57) Weak-links criterion for pnictide and cuprate superconductors / E.F. Talantsev2, W.P. Crump0. – Текст: непосредственный // Superconductor Science and Technology. — 2018. — V. 31. — P. 124001—124007.