На правах рукописи

Блинов Илья Викторович

МАГНИТНЫЕ И МАГНИТОРЕЗИСТИВНЫЕ СВОЙСТВА СЛОИСТЫХ НАНОСТРУКТУР НА ОСНОВЕ АНТИФЕРРОМАГНИТНОГО ТРОЙНОГО СПЛАВА Ni-Fe-Mn

01.04.11 – Физика магнитных явлений

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

Екатеринбург – 2016

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН)

Научный руководитель: Попов Владимир Владимирович, доктор технических наук, профессор, заведующий лабораторией диффузии Федерального государственного бюджетного учреждения науки Института физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (г. Екатеринбург)

Официальные оппоненты:

Андреева Марина Алексеевна,

физико-математических ведущий доктор наук, научный сотрудник кафедры физики твердого тела Федерального физического факультета бюджетного образовательного государственного учреждения высшего образования «Московский государственный M.B. университет имени Ломоносова» (г. Москва)

Овчинников Владимир Владимирович,

доктор физико-математических наук, профессор, заведующий воздействий лабораторией пучковых государственного Федерального бюджетного Института учреждения науки электрофизики Уральского отделения Российской академии наук (г. Екатеринбург)

Ведущая организация: Федеральное государственное автономное образовательное учреждение высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина» (г. Екатеринбург)

Защита состоится «10» февраля 2017 года в 11⁰⁰ часов

на заседании диссертационного совета Д 004.003.01 при Федеральном государственном бюджетном учреждении науки Институте физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН) по адресу: 620990, г. Екатеринбург, ул. С. Ковалевской, 18

С диссертацией можно ознакомиться в библиотеке ИФМ УрО РАН и на сайте www.imp.uran.ru

Автореферат разослан « » ноября 2016 года

Ученый секретарь диссертационного совета Д 004.003.01 доктор физико-математических наук

Чарикова Т. Б.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень ее разработанности.

Работа направлена на решение фундаментальной задачи физики магнитных явлений, связанной с изучением обменного взаимодействия, возникающего на границе раздела в наноструктурах ферромагнетик (ФМ)/антиферромагнетик (АФ), содержащих антиферромагнитный сплав Ni-Fe-Mn. Рассматривается возможность использования этого сплава в качестве материала для закрепляющего слоя в спиновых клапанах. Выявляются закономерности и механизм формирования однонаправленной анизотропии в бислоях марганец/пермаллой при различных режимах термомагнитной обработки.

Современные магниторезистивные наноматериалы, состоящие из ультратонких слоев магнитных и немагнитных металлов, обладают эффектом гигантского магнитосопротивления (ГМС) [1,2], благодаря чему имеют широкое применение в различных технических приложениях [3]. Гигантский магниторезистивный эффект полученный в 1988 – 1990 годы в сверхрешетках, приготовленных методами молекулярно-лучевой эпитаксии и магнетронного напыления, достигал (10-80) % в поле насыщения (H_s) напряженностью в десятки килоэрстед при температуре T = 4,2 К [2,4].

В 1991 году был предложен новый тип наноструктуры – спиновый клапан [5]. Магниторезистивная чувствительность спиновых клапанов оказалась гораздо выше, чем у сверхрешеток. В простейшем случае спиновый клапан состоит из двух ферромагнитных (ΦM) слоев. разделенных немагнитной прослойкой. И антиферромагнитного (АФ) слоя [6]. При этом в одном из ФМ слоев, связанном с АФ слоем, в результате обменного взаимодействия на интерфейсе ФМ/АФ формируется однонаправленная магнитная анизотропия. Петля магнитного гистерезиса бислоя ФМ/АФ оказывается смещенной по оси магнитного поля. Смещение центра петли гистерезиса относительно нуля характеризуется полем смещения (H_{ex}) [7]. Для спиновых клапанов характерно резкое изменение электрического сопротивления в малых магнитных полях. Большие величины магнитосопротивления (5-15) % и чувствительности (1-5) %/Э делают спиновые клапаны удобным материалом для применения в устройствах микроэлектроники [8].

К важным характеристикам, определяющим эффективную работу спиновых клапанов, относятся оптимальное значение $H_{\rm ex}$ и высокое значение температуры блокировки $(T_{\rm b})$ – критической температуры, при которой величина $H_{\rm ex}$ для бислоя Φ М/А Φ становится равной нулю.

Перспективы применения спиновых клапанов побудили поиск новых металлических антиферромагнетиков с большим полем смещения H_{ex}, высокой температурой Нееля (T_N) и высокой коррозионной стойкостью. За последнее время исследовано достаточно много антиферромагнитных материалов. демонстрирующих в контакте с ФМ эффект однонаправленной анизотропии. антиферромагнитных материалов, Олнако металлических пригодных лля использования в спиновых клапанах, относительно немного. В настоящее время в для закрепляющего АФ слоя в спиновых качестве материалов клапанах используются следующие двойные сплавы, включающие марганец: FeMn, IrMn, NiMn, PtMn [6]. Наиболее дешевым и простым в изготовлении из указанных антиферромагнитных материалов является ГЦК который сплав $Fe_{50}Mn_{50}$,

3

характеризуется средней температурой блокировки $T_b = (120-190)$ °C, достаточно высоким полем смещения, но низкой коррозионной стойкостью. Другой сплав Ni₅₀Mn₅₀ в упорядоченном состоянии имеет более высокую температуру блокировки $T_b = (240-400)$ °C, лучшую коррозионную стойкость и более высокое значение H_{ex} по сравнению с сплавом Fe₅₀Mn₅₀. Однако для упорядочения сплава Ni₅₀Mn₅₀ необходим продолжительный отжиг при температурах (250-280) °C, что может привести к ухудшениям магниторезистивных характеристик, например, вследствие изменения качества интерфейсов, что в свою очередь усложняет технологический процесс получения спиновых клапанов [6].

Для усиления обменного взаимодействия в системах Φ M/A Φ и, как следствие, увеличения H_{ex} , T_b и повышения коррозионной стойкости в настоящей работе было предложено использовать трехкомпонентные сплавы системы Ni-Fe-Mn, для которых недостатки бинарных сплавов Ni₅₀Mn₅₀ и Fe₅₀Mn₅₀ будут выражены в меньшей мере. На основе этой системы предложено создание материалов с необходимыми для спиновых клапанов комплексом свойств.

Магнитная фазовая диаграмма системы Ni-Fe-Mn [9] показывает, что неупорядоченные твердые растворы в системе Ni-Fe-Mn при определенной атомной концентрации могут быть антиферромагнитными при температурах существенно выше комнатной, поэтому тройные сплавы могут быть использованы в качестве закрепляющих слоев в спиновых клапанах. Кроме того в этой системе возможно образование упорядоченной антиферромагнитной фазы. Согласно [10], температура блокировки при использовании этой фазы может достигать 330 °C, что заметно выше температуры Нееля неупорядоченного твердого раствора в системе Ni-Fe-Mn. Вследствие высокой температуры блокировки данная фаза представляется весьма перспективной для использования в спиновых клапанах. Однако на данный момент условия и механизм образования тройной упорядоченной фазы не понятны. Таким образом, работа, направленная на создание новых антиферромагнитных материалов с высокими значениями T_b и H_{ex} , необходимыми для приготовления искусственных магнитных наноструктур с улучшенными магнитными и магниторезистивными характеристиками, является актуальной.

Отметим, что до выполнения настоящей диссертационной работы не было ясности с механизмом образования упорядоченной антиферромагнитной фазы NiFeMn. Кроме того отсутствовали данные о температурном и концентрационном диапазоне стабильности A Φ фазы NiFeMn. В связи с этим важной задачей, на решение которой направлены исследования в диссертации, является разработка методики и оптимизация режимов нанесения слоев и термомагнитной обработки, необходимых для получения A Φ фазы NiFeMn с высокой T_b , а также разработка технологического цикла для применения этой фазы в качестве закрепляющего слоя в спиновом клапане.

Актуальность работы подтверждается выполнением государственного задания по теме "Спин" (2010–2013 гг. № госрегистрации 01201064333, 2014–2016 гг. № госрегистрации № 01201463330), программы фундаментальных исследований УрО РАН (проект № 15-9-2-44), гранта Министерства образования и науки РФ №14.Z50.31.0025, грантов президиума РАН № 09-П-2-1037, № 12-П-2-1051, РФФИ № 16-32-00128, НШ №6172.2012.2, а также гранта молодых ученых и аспирантов УрО РАН № 11-2-НП-531.

Цель работы.

Определение механизмов формирования обменного взаимодействия в наноструктурах ФМ/АФ с антиферромагнитными тройными сплавами Ni-Fe-Mn для выяснения возможности использования этих сплавов в качестве закрепляющего слоя в спиновых клапанах. Установление связи между структурой и магнитными и магниторезистивными свойствами наноструктур в зависимости от состава антиферромагнитного слоя, толщин и порядка нанесения ФМ и АФ слоев, используемого типа подложки, проведенной термомагнитной обработки.

Разработка методики и определение параметров, необходимых для получения АФ фазы с высокой температурой блокировки, позволяющей создавать спиновые клапаны с высокой термостабильностью и улучшенными магнитными и магниторезистивными характеристиками.

Для достижения поставленной цели решались следующие задачи:

1. Приготовление бислоев ФМ/АФ, включающих АФ сплав Ni-Fe-Mn, на различных подложках (поликристаллические – стекло и монокристаллические – Al₂O₃). Изучение влияния толщин слоев, типа подложки, термомагнитной обработки на гистерезисные характеристики бислоев ФМ/АФ.

2. Приготовление пленок с антиферромагнитным монослоем Ni-Fe-Mn с различной атомной концентрацией компонент. Исследование условий образования упорядоченной антиферромагнитной фазы NiFeMn при различных режимах термомагнитной обработки.

3. Приготовление бислоев марганец/пермаллой и исследование кинетики формирования в них упорядоченной антиферромагнитной фазы NiFeMn при термомагнитной обработке.

4. Приготовление спиновых клапанов с верхним расположением антиферромагнитного сплава Ni-Fe-Mn. Оптимизация магнитных и магниторезистивных свойств посредством варьирования толщин слоев с целью получения высоких значений магнитосопротивления и поля смещения.

5. Разработка методики, позволяющей создавать спиновые клапаны с высокой термостабильностью, включающие упорядоченную антиферромагнитную фазу NiFeMn.

Научная новизна диссертации.

1. Показано, что при термомагнитной обработке выше 300 °C однослойных пленок, приготовленных из сплавов системы Ni-Fe-Mn, образования упорядоченной антиферромагнитной фазы NiFeMn не происходит, а происходит распад на две фазы – марганец и пермаллой.

2. Продемонстрирована возможность образования упорядоченной антиферромагнитной фазы NiFeMn при термомагнитной обработке бислоев марганец/пермаллой. Исследован термодиффузионный механизм образования данной фазы. Ключевую роль в образовании упорядоченной антиферромагнитной фазы NiFeMn при термомагнитной обработке бислоев марганец/пермаллой играет диффузия марганца по границам кристаллитов в нанокристаллической пленке пермаллоя.

3. В спиновых клапанах в качестве закрепляющего слоя применены тройные сплавы Ni-Fe-Mn.

Научная и практическая значимость работы.

В настоящей работе получены новые данные о магнитных свойствах наноструктур Ni₈₀Fe₂₀/Ni-Fe-Mn. Создана новая наноструктура типа «спиновый клапан», содержащая АФ слой Ni-Fe-Mn. Определен характер изменения ГМС и магнитных характеристик образцов, включающих сплав Ni-Fe-Mn, в зависимости от толщины слоев, режима термомагнитной обработки, порядка нанесения слоев и типа используемой подложки.

Показано, что при использовании АФ сплава Ni-Fe-Mn, напыленного из мишени соответствующего состава на ферромагнитный слой в присутствии магнитного поля, можно достичь относительно высоких значений $H_{ex} \approx 40$ Э с температурой блокировки $T_b \approx 170$ °C. Магнитосопротивление ($\Delta R/R_s$) спинового клапана содержащего АФ слой Ni-Fe-Mn составляет ~ 7 %, а магниторезистивная чувствительность $\Delta(\Delta R/R_s)/\Delta H = 0.75$ %/Э. Функциональные характеристики данных наноструктур не уступают характеристикам спиновых клапанов с АФ слоем Fe₅₀Mn₅₀. Полученные данные демонстрируют возможность применения неупорядоченного тройного сплава Ni-Fe-Mn в качестве закрепляющего слоя в спиновых клапанах.

В бислоях марганец/пермаллой определены параметры, обеспечивающие формирование упорядоченной антиферромагнитной фазы NiFeMn. Дополнительно создана новая структура, содержащая упорядоченную АФ фазу NiFeMn. Образцы данного типа обладают большими значениями обменного смещения (плотности энергии обменного взаимодействия, J_{ex}) и высокой температурой блокировки: $H_{ex} = 380 \Im (J_{ex} = 0.27 \text{ эрг/см}^2), T_b \simeq 270 \text{ °C}.$

Разработан полный технологический цикл создания спиновых клапанов с упорядоченной AФ фазой NiFeMn со следующими усредненными характеристиками: поле смещения пиннингованного слоя $H_{\rm ex} = 100$ Э, $T_{\rm b} \simeq 270$ °C, магнитосопротивление ~ 4 %.

Методология и методы исследования.

Для выполнения поставленных в работе целей и задач использованы следующие методы и подходы.

Образцы приготавливались по технологии электронно-лучевого напыления на сверхвысоковакуумной установке Varian (США). Толщины слоев контролировались с помощью кварцевого толщиномера. Также была использована оптимизированная технология напыления наноструктур при помощи напылительной системы магнетронного напыления MPS-4000-C6 (Ulvac). Толщины слоев определялись по известной скорости напыления, определенной экспериментально для каждого распыляемого материала. Определение скорости напыления материалов производилось с помощью оптического профилометра Zygo NewView 7300 по известному времени напыления и измеренной толщине пленки.

Для магнетронного напыления использовались мишени аттестованного состава. Элементный состав пленок контролировался при помощи рентгеновского микроанализа на базе растрового электронного микроскопа с автоэмиссионным катодом FEI Inspect F, оборудованного приставкой Genesis APEX 2 EDS.

Аттестация образцов проводилась с использованием нейтронографии, просвечивающей электронной микроскопии, рентгеноспектрального микроанализа, рентгеноструктурного анализа и Оже-электронной спектроскопии.

Измерение магнитных и магниторезистивных свойств образцов было проведено на метрологически аттестованном оборудовании. Магнитосопротивление определялось четырехконтактным методом с погрешностью 0,1 %. Намагниченность насыщения образцов определялась с погрешностью 3 %.

Положения, выносимые на защиту.

1. Показана перспективность применения антиферромагнитного тройного сплава Ni-Fe-Mn в качестве материала для закрепляющего слоя в спиновых клапанах.

2. В бислоях марганец/пермаллой определены режимы нанесения и термомагнитной обработки, обеспечивающие формирование упорядоченной АФ фазы NiFeMn. Показано, что данная фаза образуется на границах зерен пермаллоя, по которым диффундирует Mn.

3. Разработан полный технологический цикл изготовления многослойных наноструктур с высокой термостабильностью на основе упорядоченной антиферромагнитной фазы NiFeMn.

Степень достоверности полученных результатов.

Достоверность полученных результатов, аргументированность заключений и выводов диссертационной работы обеспечивается использованием аттестованных образцов и аттестованного современного экспериментального оборудования. Результаты исследований, приведенные в диссертации, согласуются между собой и не противоречат известным научным представлениям и результатам.

Апробация работы.

Результаты работы докладывались на международных и всероссийских Молодежная школа-семинар конференциях: IX по проблемам физики конденсированного состояния вещества (СПФКС-9) (Екатеринбург, 17-23 ноября, 2008 г); 16-я Всероссийская научная конференция студентов-физиков и молодых учёных ВНКСФ-16 (Волгоград, 22-29 апреля, 2010); XI Всероссийская молодёжная школа-семинар по проблемам физики конденсированного состояния (СПФКС-XI) (Екатеринбург, 15-21 ноября, 2010); Recent Trends in Nanomagnetism, Spintronics and their Applications (RTNSA) (Ordizia, Basque Country, 1-4 June 2011); XIII Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (СПФКС-13) (Екатеринбург, 7-14 ноября 2012г.); 21-st International Colloquium on Magnetic Films and Surfaces (ISMFS 2012) (Шанхай, Китай, 24-28 сентября 2012); International Conference «TechConnect World» (Santa Clara, California, USA, June 18-21, 2012); Moscow International Symposium on Magnetism (MISM-2014) (Москва, 30 июня-4 июля 2014г.); Научная сессия ИФМ УрО РАН по итогам 2014 г. (Екатеринбург 2015 г); 20 International Conference on Magnetism (ISM-2015) (Spain, Barcelona, 5-10 July 2015); VI Euro-Asian Symposium «Trends in Magnetism» (EASTMAG-2016) (Красноярск, 15-19 августа 2016 г.); International conference on Magnetism and Spintronics (Sol-SkyMAG 2016) (San Sebastian, Spain, 28-30 июня, 2016 г.); Magnetic materials. New technoligies (BICMM-2016) (Listvyanka village, Irkutsk region, Russia, 22–26 августа, 2016 г.).

Личный вклад автора.

Постановка задач проводилась автором совместно с научным руководителем. Автором совместно с Матвеевым С.А. и Архиповой Н.К. изготовлены образцы методом электронно-лучевого напыления. Изготовление образцов методом магнетронного напыления проведено автором при участии Проглядо В.В. и Наумовой Л.И. Автором проведены магнитные и магниторезистивные измерения на вибромагнитометре. Магнитные измерения на сквид-магнитометре проведены в Центре коллективного пользования «Испытательный центр нанотехнологий и перспективных материалов» Королевым А.В. и в ОМТТ НИИ ФПМ УрФУ Волеговым А.С. Оже-спектроскопические исследования проводились при участии Степанова К.А. и Седовой П.Н. Лично автором проведена термомагнитная обработка наноструктур, исследовано распределение концентрации элементов по глубине образцов. Исследования микроструктуры методами просвечивающей электронной микроскопии проведены Т.П. Кринициной в Центре коллективного пользования «Испытательный центр нанотехнологий и перспективных материалов». Рентгенографические исследования проведены при участии Гавико В.С. и Наумовой Нейтронографические измерения проводились Л.И. Ворониным В.И. Рентгеноспектральный микроанализ проводился Патраковым Е.И. Ионное травление проводилось при участии Максимовой И.К. Результаты исследований докладывались автором на всероссийских и международных конференциях. Обсуждение результатов и подготовка публикаций велась автором совместно с Поповым В.В., Миляевым М.А. и Устиновым В.В.

Соответствие диссертации паспорту специальности.

Содержание диссертации соответствует пункту 2. «Экспериментальные исследования магнитных свойств и состояний веществ различными методами, установление взаимосвязи этих свойств и состояний с химическим составом и структурным состоянием, выявление закономерностей их изменения под влиянием различных внешних воздействий» и пункту 5. «Разработка различных магнитных материалов, технологических приемов, направленных на улучшение их характеристик, приборов и устройств, основанных на использовании магнитных явлений и материалов» паспорта специальности 01.04.11 – Физика магнитных явлений.

Публикации.

По теме диссертации опубликовано 6 статей в реферируемых научных журналах, входящих в перечень ВАК, а также 13 тезисов докладов в материалах российских и международных конференций. Основные публикации приведены в конце автореферата.

Структура и объем диссертации.

Диссертация состоит из введения, 5 глав, заключения, списка сокращений и условных обозначений и списка литературы. Общий объем диссертации составляет 101 страницу, включая 44 рисунка, 3 таблицы, 10 формул и список цитируемой литературы из 141 наименования.

Краткое содержание работы.

Во введении обоснована актуальность темы диссертационной работы, сформулированы цель и задачи исследования, аргументирована научная новизна и показана практическая значимость полученных результатов, изложены выносимые на защиту положения и кратко описана структура диссертации.

В первой главе представлен обзор работ, посвященных исследованиям магнитотранспортных свойств наноструктур эффектом магнитных И с однонаправленной анизотропии. Кратко описываются физические причины, объясняюшие Подробно явление гигантского магнитосопротивления.

рассматривается обменное взаимодействие, возникающее на границе раздела в наноструктурах ФМ/АФ. Проанализировано влияние толщин ФМ и АФ слоев на обменное смещение. Кратко описаны основные свойства наноструктур типа «спиновый клапан». Особое внимание уделяется анализу используемых для обменного смещения материалов и антиферромагнетиков, используемых в качестве закрепляющего слоя в спиновых клапанах. В конце главы приводятся выводы из обзора литературы, и ставится задача исследования.

Во второй главе описаны методики приготовления образцов слоистых металлических наноструктур методами электронно-лучевого и магнетронного напыления, методика определения толщины приготовленных магнетронным напылением пленок при помощи оптической интерферометрии. Описана методика ионного травления и определение толщины удаляемого слоя, а также технология термомагнитной обработки приготовленных образцов. Приводится описание методики определения распределения элементов и состава слоев в образцах при помощи Оже-электронной спектроскопии. Приведено описание методики измерения магнитосопротивления и намагниченности. Описаны методы исследования микроструктуры слоев при помощи рентгеноструктурного анализа и электронной микроскопии. Описана методика изучения кристаллической и магнитной структуры тройного сплава (Ni₈₀Fe₂₀)₄₀Mn₆₀ при помощи нейтронографических измерений. Также описана методика исследования химического состава мишеней И приготовленных образцов с использованием рентгеноспектрального микроанализа.

В третьей главе представлены результаты исследования использования тройного сплава Ni-Fe-Mn с различной концентрацией компонент для реализации однонаправленной анизотропии в бислоях ФМ/АФ. Важным преимуществом данного сплава является простота изготовления мишеней для магнетронного напыления и невысокая стоимость входящих в его состав компонентов. Согласно магнитной фазовой диаграмме тройной металлической системы Ni-Fe-Mn, неупорядоченные твердые растворы в системе Ni-Fe-Mn при определенной атомной концентрации антиферромагнитны при температурах выше комнатной [9]. При этом при повышении концентрации марганца (x_{Mn}) возрастает T_N . Например, для сплава (Ni₇₀Fe₃₀)₂₀Mn₈₀ $T_N \cong 230$ °C.

С целью изучения обменного взаимодействия и характера изменения магнитных свойств в системе Φ M/A Φ , содержащей сплавы системы Ni-Fe-Mn, методом магнетронного напыления была изготовлена серия наноструктур с A Φ сплавами Fe₅₀Mn₅₀ и (NiFe)_{1-x}Mn_x ($x_{Mn} = 0.6$; 0,7; 0,8) с различными толщинами A Φ и Φ M слоев на подложках из стекла и сапфира (Al₂O₃).

На Рисунке 1 показаны измеренные вдоль оси легкого намагничивания петли магнитного гистерезиса образцов $Al_2O_3/Ta(5hm)/Ni_{80}Fe_{20}(20hm)/(Ni_{80}Fe_{20})_{40}Mn_{60}(50hm)/Ta(5hm)$ и $Al_2O_3/Ta(5hm)/Ni_{80}Fe_{20}(20hm)/(Ni_{70}Fe_{30})_{30}Mn_{70}(50hm)/Ta(5hm)$, напыленных в магнитном поле.

Из Рисунка 1 видно, что при содержании марганца 60 ат. % петля гистерезиса характеризуется низкой коэрцитивной силой $H_c \approx 1$ Э, характерной для одиночной пленки пермаллоя. Смещения петли гистерезиса и увеличения H_c в данном случае не происходит. Отсутствие однонаправленной анизотропии обусловлено тем, что температура блокировки данного бислоя ниже комнатной. Экспериментально определенная путем нейтронографических измерений температура Нееля

массивного материала (Ni₈₀Fe₂₀)₄₀Mn₆₀ составляет $T_{\rm N} = 87$ °C. Условие $T_{\rm b} < T_{\rm N}$ для бислоев ФМ/АФ является типичным. Известно, что в тонкопленочных системах температура блокировки зависит от толщины пленки, размера зерна и микроструктуры и, как правило, меньше температуры Нееля массивного АФ [7].

Увеличение концентрации марганца до 70 ат. % приводит к появлению смещенной петли гистерезиса. Происходит увеличение коэрцитивной силы до 8,5 Э, $H_{\rm ex}$ составляет 35,5 Э, отношение $H_c/H_{\rm ex} = 0,24$. Плотность энергии обменного взаимодействия на границе раздела ФМ/АФ, которая выражается формулой, $J_{\rm ex} = M_{\rm \Phi M} \cdot t_{\rm \Phi M} \cdot H_{\rm ex}$ ($M_{\rm \Phi M}$ - намагниченность насыщения ферромагнетика, $t_{\rm \Phi M}$ - толщина ФМ, $H_{\rm ex}$ - сдвиг петли гистерезиса) [7] равна $J_{\rm ex} = 0,051$ эрг/см². Полученное значение сопоставимо с обменной энергией, для таких антиферромагнетиков, как FeMn и CrMn [7].

Рисунок1–Петлигистерезисаобразцов: $Al_2O_3/Ta(5hm)/Ni_{80}Fe_{20}(20hm)/(Ni_{80}Fe_{20})_{40}Mn_{60}(50hm)/Ta(5hm)(1)и<math>Al_2O_3/Ta(5hm)/Ni_{80}Fe_{20}(20hm)/(Ni_{70}Fe_{30})_{30}Mn_{70}(50hm)/Ta(5hm)$ (2)

Отметим, что влияние толщин слоев на характер изменения гистерезисных свойств бислоев Φ M/A Φ необходимо учитывать для дальнейшей оптимизации магнитных характеристик приготовленных образцов. Поэтому важным этапом является изучение зависимости магнитных свойств исследуемых объектов от толщины Φ M и A Φ слоев. Для исследования влияния толщины A Φ (Ni₇₀Fe₃₀)₃₀Mn₇₀ на магнитные свойства бислоев были приготовлены структуры с фиксированной толщиной слоя пермаллоя (10 нм) и различной толщиной антиферромагнитного слоя (от 5 до 80 нм). На Рисунке 2 приведены соответствующие зависимости поля смещения и коэрцитивной силы от толщины слоя (Ni₇₀Fe₃₀)₃₀Mn₇₀, $t_{A\Phi}$.

Полученные зависимости $H_{ex}(t_{A\Phi})$ и $H_c(t_{A\Phi})$ качественно согласуются с результатами исследований по влиянию толщины антиферромагнитного слоя на гистерезисные характеристики бислоев $\Phi M/A\Phi$ [11]. При увеличении $t_{A\Phi}$ от 5 до 20 нм H_{ex} возрастает от 0 до 45 Э. Насыщение H_{ex} происходит при толщине $t_{A\Phi}>20$ нм.

Из Рисунка 2 видно, что при толщине слоя $(Ni_{70}Fe_{30})_{30}Mn_{70}$ 5 нм обменный сдвиг отсутствует. Таким образом, для получения сдвига петли гистерезиса в наноструктуре $Ni_{80}Fe_{20}/(Ni_{70}Fe_{30})_{30}Mn_{70}$ необходима толщина слоя $(Ni_{70}Fe_{30})_{30}Mn_{70}$ более 5 нм.

Рисунок 2 – Зависимости H_{ex} и H_c образца Al₂O₃/Ta(5нм)/Ni₈₀Fe₂₀(10нм)/(Ni₇₀Fe₃₀)₃₀Mn₇₀($t_{A\Phi}$)/Ta(5нм) от толщины антиферромагнитного слоя, $t_{A\Phi}$

Исследования зависимости H_{ex} от толщины ферромагнитного слоя пермаллоя t_{NiFe} образца стекло/Ta(5нм)/Ni₈₀Fe₂₀(t_{NiFe}) /(Ni₇₀Fe₃₀)₃₀Mn₇₀(10нм)/Ta(5нм) при t_{NiFe} =5, 15, 20 нм показали, что при увеличении толщины пермаллоя H_{ex} уменьшается от 120 до 8,5 Э, что соответствует отношению $H_{ex} \propto 1/t_{\Phi M}$, указывающему на то, что однонаправленная анизотропия – это эффект границы раздела. Полученная зависимость $H_{ex}(t_{NiFe})$ качественно согласуется с работой [12]. Таким образом, характер полученных зависимостей H_{ex} и H_c от толщин ФМ и АФ слоев в наноструктуре Ni₈₀Fe₂₀/(Ni₇₀Fe₃₀)₃₀Mn₇₀ не противоречит имеющимся физическим представлениям в работах [11,12] и может быть объяснен в рамках моделей, предложенных в работах [7,13].

Как известно, наличие текстуры <111> в бислоях ФМ/АФ с ГЦК структурой значительно увеличивает поле обменного сдвига [7]. Одним из параметров, влияющим на степень совершенства текстуры <111>, является шероховатость подложки. Для исследования влияния типа подложки на гистерезисные свойства бислоев были приготовлены структуры Ta(5нм)/Ni₈₀Fe₂₀(5нм)/(Ni₇₀Fe₃₀)₃₀Mn₇₀(10нм)/Ta(5нм), напыленные на стеклянную и сапфировую подложки. Результаты исследований представлены на Рисунке 3.

Рисунок 3 – Петли магнитного гистерезиса образцов Ta(5нм)/Ni₈₀Fe₂₀(5нм)/ (Ni₇₀Fe₃₀)₃₀Mn₇₀(10нм)/Ta(5нм), приготовленных на стеклянной (1) и сапфировой (2) подложках

Как видно из Рисунка 3, при напылении на стекло H_{ex} гораздо выше по сравнению с напылением на сапфир: $H_{ex} = 120$ Э (стекло) и $H_{ex} = 25$ Э (Al₂O₃). Такое различие связано с текстурой приготовленных пленок. Проведенные исследования не выявили текстуры <111> в образцах, напыленных на сапфировые подложки. В то же время напыление на стеклянную подложку приводит к возникновению текстуры Проведенные рентгенографические <111>. исследования образца стекло/Та(5нм)/Ni₈₀Fe₂₀(5нм)/(Ni₇₀Fe₃₀)₃₀Mn₇₀(10нм)/Та(5нм) подтвердили наличие острой аксиальной текстуры <111>. Отсутствие текстуры <111> в образцах, напыленных на Al₂O₃, обусловлено большой шероховатостью подложки [14]. шероховатости, Среднеквадратичное значение определенное при помощи оптического профилометра, составляет (0,2-0,3) нм и (0,8-1,2) нм для подложек из стекла и сапфира, соответственно.

Таким образом, проведенные исследования влияния типа подложки на магнитные свойства исследуемых образцов показывают, что для возникновения текстуры <111> и, как следствие, большего $H_{\rm ex}$ в наноструктуре $Ni_{80}Fe_{20}/(Ni_{70}Fe_{30})_{30}Mn_{70}$ целесообразно применять стеклянные подложки с малой шероховатостью.

Исследование температурной зависимости поля смещения образцов с различными АФ показало, что температура блокировки $T_{\rm b}$ составляет от 145 до 170 °C в зависимости от типа АФ материала. Минимальная $T_{\rm b} = 145$ °C зафиксирована для образца Al₂O₃/Ta(5нм)/Ni₈₀Fe₂₀(20нм)/Fe₅₀Mn₅₀(50нм)/Ta(5нм).

получены Большие 170 образцов $T_{\rm b}$ 155 °C И °C = для Al₂O₃/Ta(5нм)/Ni₈₀Fe₂₀(20нм)/(Ni₇₀Fe₃₀)₃₀Mn₇₀(50нм)/Ta(5нм) И стекло/Та(5нм)/Ni₈₀Fe₂₀(10нм)/(Ni₇₀Fe₃₀)₂₀Mn₈₀(20нм)/Та(2нм), соответственно. Повышение T_b с 155 °C до 170 °C в образцах, содержащих АФ тройной сплав Ni-Fe-Mn, обусловлено большим содержанием марганца в АФ слое. Это согласуется с магнитной фазовой диаграммой системы Ni-Fe-Mn [9].

Проведенные исследования влияния типа АФ материала на температурную зависимость $H_{\rm ex}$ в наноструктуре Ni₈₀Fe₂₀/АФ показали, что максимальной температурой блокировки $T_{\rm b} = 170^{\circ}$ С обладает образец, содержащий АФ сплав (Ni₇₀Fe₃₀)₂₀Mn₈₀. По-видимому, это максимальное значение, которое можно достичь при использовании сплавов тройной системы Ni-Fe-Mn.

Установлено, что варьирование типа подложки и толщин слоев приводит к изменениям величины поля смещения, что является основой для приготовления наноструктур типа «спиновый клапан» с необходимыми характеристиками.

В четвертой главе представлены результаты исследований образования упорядоченной антиферромагнитной фазы в двух типах наноструктур: монослоях $(Ni_{80}Fe_{20})_{60}Mn_{40}$, $(Ni_{80}Fe_{20})_{40}Mn_{60}$ и двухслойных пленках $Mn/Ni_{77}Fe_{23}$ – при различных режимах термомагнитной обработки, типах подложки и различных количествах слоев с целью достижения максимальной величины H_{ex} и T_{b} .

магнетронного напыления Приготовленные методом образцы стекло/(Ni₈₀Fe₂₀)₄₀Mn₆₀(50нм)/Та(5нм) стекло/(Ni₈₀Fe₂₀)₆₀Mn40₆₀(50нм)/Та(5нм) И были подвергнуты термомагнитной обработке в интервале температур (300 – 500) [°]С в течение 3 ч. Оказалось, что, начиная с температуры отжига $T_{\text{отж}} = 300$ [°]С, в исследуемых образцах происходит фазовое разделение гомогенного твердого раствора NiFeMn на ФМ области, содержащие пермаллой, и АФ области, включающие марганец, что подтверждается данными рентгеновской дифракции. В примера на Рисунке показаны дифрактограммы качестве 4 образца стекло/(Ni₈₀Fe₂₀)₆₀Mn₄₀(50нм)/Та(5нм) до и после термомагнитной обработки при $T_{\rm отж} = 500^{\circ}$ С в течение 3 ч.

Рисунок 4 – Рентгеновские дифрактограммы образцов стекло/(Ni₈₀Fe₂₀)₆₀Mn₄₀(50нм)/Ta(5нм) до (1) и после (2) термомагнитной обработки при $T_{\text{отж}} = 500$ °C в течение 3 ч.

До термомагнитной обработки на дифрактограмме присутствуют только рефлексы, соответствующие твердому раствору Ni-Fe-Mn: (111), (200). После отжига возникают новые структурные пики, соответствующие пермаллою: (111), (200) – и α-Mn: (330), (332), (431). Подобные результаты были получены и при

увеличении концентрации Mn до 60 ат. %. Таким образом, проведенные исследования показали, что образования упорядоченной A Φ фазы NiFeMn в однослойных пленках (Ni₈₀Fe₂₀)_{1-x}Mn_x, $x_{Mn} = 0,4$; 0,6 при исследованных режимах термомагнитной обработки не происходит.

Бислои марганец/пермаллой, приготовленные электронно-лучевым напылением, были отожжены в магнитном поле в интервале температур (230 – 300) °С в течение 4 ч. При таких режимах термомагнитной обработки в бислоях в результате диффузии атомов Mn по границам зерен пермаллоя формируется упорядоченная AФ фаза NiFeMn.

Дo термомагнитной обработки магнитные свойства наноструктуры Al₂O₃/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) полностью определяются одиночным слоем пермаллоя, и марганец не оказывает влияние на её магнитные и структурные характеристики. Образцы характеризуются низкой коэрцитивной силой $H_c = 3$ Э, намагниченность насыщения пермаллоя составляет $M_{\rm s}^{\rm NiFe} = 880$ Гс. На Рисунке 5 микрофотография электронограмма образца представлены электронная И Al₂O₃/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) до термомагнитной обработки. Видно, что пленки обладают нанокристаллической структурой, в которой кристаллиты высокоугловыми границами, о чем свидетельствуют кольцевые разделены электронограммы. Размер нанокристаллитов (15-30)составляет HM. Ha электронограммах присутствуют все разрешенные отражения для NiFe: (111), (200), (220), (311) – и α-Мп: (330), (332), (431) и (633). Из анализа распределения интенсивности отражений следует, что текстура в пленке отсутствует. Также не какие-либо дополнительные рефлексы, свидетельствующие обнаружены 0 присутствии посторонних фаз.

Рисунок 5 – Электронная микрофотография (а) и электронограмма (б) образца Al₂O₃/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) до термомагнитной обработки

В результате исследования структуры, магнитных характеристик, поэлементного состава в бислоях марганец/пермаллой определен оптимальный режим термомагнитной обработки, приводящий к формированию упорядоченной АФ фазы NiFeMn с максимальным H_{ex} .

На Рисунке 6 показана петля магнитного гистерезиса образца Al₂O₃/Ni₇₇Fe₂₃(5нм)/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) после отжига при 260 °C в

течение 4 ч. При таком режиме термомагнитной обработки H_{ex} достигает максимального значения и составляет $H_{ex} = 380$ Э. Плотность энергии обменного взаимодействия равна $J_{ex} = 0,27$ эрг/см². Это заметно превышает $J_{ex} = 0,051$ эрг/см², полученную для антиферромагнетика Ni-Fe-Mn, приготовленного магнетронным напылением из сплава (Ni₇₀Fe₃₀)₃₀Mn₇₀.

Рисунок 6 — Петля магнитного гистерезиса образца $Al_2O_3/Ni_{77}Fe_{23}(5HM)/Mn(50HM)/Ni_{77}Fe_{23}(30HM)/Ta(5HM)$ после отжига 260 °C, 4 ч.

На Рисунке 7 приведены распределения концентраций элементов образца Al₂O₃/Ni₇₇Fe₂₃(5нм)/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) до (а) и после отжига при 260°С в течение 4 ч (б). Из Рисунка 76 видно, что в процессе отжига наблюдаются диффузия марганца в пермаллой и размытие границ между слоями пермаллоя и марганца. Причем концентрации элементов в образце непостоянны. При данном режиме термообработки марганец распределен по всей глубине структуры, при этом пермаллой насыщается марганцем и существует область, в которой концентрация Mn в пермаллое приводит к образованию упорядоченной фазы NiFeMn. Электронно-микроскопическое исследование подтверждает формирование упорядоченной АФ фазы. Об этом свидетельствует появление сверхструктурных дебаевских колец (100), (110), (210), (211) на электронограмме образца Al₂O₃/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) после отжига в магнитном поле при 260°С в течение 4 ч (Рисунок 8).

На электронных микрофотографиях, представленных на Рисунке 8, видны столбчатая структура и отсутствие какого-либо промежуточного слоя между слоями марганца и пермаллоя.

Рисунок 7 – Распределение концентраций элементов по глубине в образце Al₂O₃/ Ni₇₇Fe₂₃(5нм)/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) после напыления (а) и после отжига при 260°C в течение 4 ч (б)

Рисунок 8 – Электронограмма (а), темнопольное изображение в рефлексе (100) (б) и светлопольное изображение (в), полученные с поперечного сечения образца Al₂O₃/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) после термомагнитной обработки при 260 °C в течение 4 ч. Стрелками обозначены сверхструктурные отражения

На основании полученных результатов механизм формирования упорядоченной АФ фазы NiFeMn при термомагнитной обработки бислоев марганец/пермаллой можно представить следующим образом. В процессе отжига происходит зернограничная диффузия Mn в пермаллой. Начиная с температуры отжига 240 °C, концентрация марганца в пермаллое постепенно увеличивается и достигает максимума при 260 °C. При таких режимах термомагнитной обработки происходит возникновение упорядоченной антиферромагнитной фазы NiFeMn. Марганец проникает в пермаллой по границам кристаллитов, а затем диффундирует от границ в приграничные объемы матрицы. Проникновение марганца в пермаллой происходит главным образом по границам кристаллитов в нанокристаллической пленке пермаллоя. Кроме того, возможна диффузия по дислокациям, малоугловым границам и т.п. Объемная диффузия в данном случае исключена. Это заключение следует на основании сведений о значении коэффициента объемной диффузии. К сожалению, в литературе отсутствуют данные о диффузии марганца в пермаллое, и приходится ориентироваться на описание примесной диффузии Мп в γ-Fe. Согласно [15], значение коэффициента объемной диффузии Мп в γ-Fe при температуре 260 °C равно 1,16·10⁻³¹ м/с². Соответственно, глубина проникновения за время отжига ~ 4 ч составит только ~10⁻¹⁴ м, то есть проникновение марганца в прилегающий слой пермаллоя по механизму объемной диффузии практически исключено. Вероятно, проникновение марганца в пермаллой реализуется по путям ускоренной диффузии, в первую очередь по большеугловым границам зерен.

Ha Рисунке показана температурная зависимость 9 $H_{\rm ex}$ образца Al₂O₃/Ni₇₇Fe₂₃(5нм)/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм), отожженного при 260 °С в течение 4 ч. *H*_{ex} сохраняется постоянным до 127 °С, после чего уменьшается. Определенная экстраполяцией (пунктирная линия на Рисунке 9) температура блокировки $T_{\rm b} \cong 270$ °C. Полученное значение $T_{\rm b}$ сопоставимо с $T_{\rm b}$ системы с АФ слоем IrMn ((240-290) °C), широко используемой при разработке элементов магнитной памяти (MRAM) [8]. Полученная упорядоченная АФ фаза NiFeMn перспективна для использования в спиновых клапанах в качестве закрепляющего слоя вследствие высокой температуры блокировки и высоких значений поля обменного смещения. На её основе возможно создание спиновых клапанов с повышенной термостабильностью.

Рисунок 9 — Температурная зависимость H_{ex} образца Al₂O₃/Ni₇₇Fe₂₃(5нм)/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) после отжига 260°С в течение 4 ч.

В пятой главе представлены результаты исследований магнитных и магниторезистивных свойств наноструктур типа «спиновый клапан» с верхним расположением антиферромагнитного сплава (Ni₇₀Fe₃₀)₂₀Mn₈₀, а также описана разработанная технология приготовления спинового клапана с нижним

расположением АФ упорядоченной фазы NiFeMn. Выбор АФ (Ni₇₀Fe₃₀)₂₀Mn₈₀ обусловлен максимальной температурой блокировки, полученной для системы тройных неупорядоченных сплавов Ni-Fe-Mn. Для исследования влияния толщины АФ слоя ($t_{A\Phi}$) на магнитосопротивление и смещение петли пиннингованного слоя была приготовлена серия образцов с общей структурной формулой стекло/Ta/Ni₈₀Fe₂₀/Co₉₀Fe₁₀/Cu/Co₉₀Fe₁₀/(Ni₇₀Fe₃₀)₂₀Mn₈₀/Ta.

При изменении толщины $t_{A\Phi} = (15; 20; 25; 30)$ нм были получены следующие значения: $H_{ex} = (30; 65; 80; 30)$ Э и ($\Delta R/R_s$) = (5,63; 6,77; 6,95; 5,89)%. Сочетание максимальных значений магниторезистивного эффекта и смещения петли пиннингованного слоя Co₉₀Fe₁₀ получены при толщине антиферромагнитного слоя $t_{A\Phi} = 25$ нм. При этой толщине ($\Delta R/R_s$) = 6,95 %. Для исследования зависимости магнитосопротивления спинового клапана от толщины медной прослойки были приготовлены образцы с толщиной $t_{A\Phi} = 25$ нм, поскольку при этой толщине наблюдается наибольшее смещение петли гистерезиса пиннингованного слоя Со₉₀Fe₁₀ и максимальный магниторезистивный эффект. При увеличении толщины меди происходит сначала рост, а затем уменьшение магнитосопротивления $\Delta R/R_s$. Увеличение $\Delta R/R_s$ может быть обусловлено ослаблением межслойного обменного взаимодействия между свободным Ni₈₀Fe₂₀/Co₉₀Fe₁₀ и пиннингованным слоем $Co_{90}Fe_{10}$, а дальнейшее уменьшение $\Delta R/R_s$ – с шунтирующим эффектом меди и рассеянием электронов проводимости при переходе между магнитными слоями. Максимальному значению $\Delta R/R_s = 7,30$ % соответствует $t_{Cu} = 2,8$ Магниторезистивная чувствительность, определенная как среднее значение для восходящей и нисходящей петли гистерезиса свободного слоя Ni₈₀Fe₂₀/Co₉₀Fe₁₀, %/Э. $\Delta(\Delta R/R_s)/\Delta H$ 0.75 Соответствующая = полевая зависимость магнитосопротивления спинового клапана показана на Рисунке 10.

Рисунок 10 – Полевая зависимость магнитосопротивления спинового клапана стекло /Ta(5нм)/Ni₈₀Fe₂₀(2нм)/Co₉₀Fe₁₀(5,5нм)/Cu(2,8нм)/Co₉₀Fe₁₀(5,5нм)/(Ni₇₀Fe₃₀)₂₀Mn₈₀(25нм)/Ta(3нм)

Для сравнения функциональных характеристик спиновых клапанов, содержащих разные АФ материалы, были приготовлены образцы стекло/Та(5нм)/Ni₈₀Fe₂₀(2нм)/

/Co₉₀Fe₁₀(5,5нм)/Cu(3,6нм)/Co₉₀Fe₁₀(5,5нм)/АФ(25нм)/Та(3нм), где В качестве закрепляющего АФ слоя использованы сплавы (Ni₇₀Fe₃₀)₂₀Mn₈₀ и Fe₅₀Mn₅₀. Полученные величины магнитосопротивления составляют 6,67 % и 6,40 % для клапанов с (Ni₇₀Fe₃₀)₂₀Mn₈₀ и Fe₅₀Mn₅₀, соответственно. Ширины петель гистерезиса свободного слоя ΔH^{free} для клапанов с (Ni₇₀Fe₃₀)₂₀Mn₈₀ и Fe₅₀Mn₅₀ составляют 17 и 14 соответственно; закрепленного слоя Э, для Со₉₀Fe₁₀ при использовании $(Ni_{70}Fe_{30})_{20}Mn_{80}$ $H_{ex} = 88$ Э, что немного меньше поля смещения для AФ Fe₅₀Mn₅₀ (*H*_{ex} = 136 Э). Функциональные характеристики спинового клапана с закрепляющим слоем (Ni₇₀Fe₃₀)₂₀Mn₈₀ не уступают характеристикам спиновых клапанов с AФ слоем $Fe_{50}Mn_{50}$. Полученные данные демонстрируют возможность применения неупорядоченного сплава Ni-Fe-Mn в качестве закрепляющего слоя в спиновых клапанах.

Для создания спиновых клапанов с упорядоченной АФ фазой NiFeMn был разработан технологический цикл, включающий следующие операции:

1) Формирование упорядоченной АФ фазы NiFeMn в образце

Al₂O₃/Ni₇₇Fe₂₃(5нм)/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм) путем термомагнитной обработки при 260 °C в течение 4 ч.

2) Ионное травление в течение 20 мин образца $Al_2O_3/Ni_{77}Fe_{23}(5hm)/Mn(50hm)/Ni_{77}Fe_{23}(30hm)/Ta(5hm)$ для удаления поверхностного слоя.

Продолжительность ионного травления выбиралась таким образом, чтобы гарантированно удалить загрязненный поверхностный слой и оставить в образце ферромагнитную область и область упорядоченной АФ фазы, необходимые для возникновения однонаправленной анизотропии в ФМ слое, напыленном на поверхность образца после травления. Далее в тексте структура после ионного травления обозначается как Al₂O₃/NiFeMn.

3) Магнетронное напыление на подготовленный образец Al₂O₃/NiFeMn слоистой структуры, состоящей из ферромагнитных слоев Co₉₀Fe₁₀, разделенных Cu.

После ионного травления образец Al₂O₃/NiFeMn помещался в камеру загрузки магнетронной установки, оснащенную радиочастотным магнетроном для очистки подложек методом обратного распыления. Слой толщиной 5 нм необходимо удалить, т.к. при переносе образца из установки ионного травления в магнетронную установку на поверхности образца адсорбируются атомы кислорода и углерода. После удаления слоя, образец перемещался в камеру металлов, и производилось магнетронное напыление слоев Co₉₀Fe₁₀, Cu и защитного слоя Ta. Магнитное поле параллельно направлению напылении было оси однонаправленной при анизотропии, сформированной в результате термомагнитной обработки исходного образца Al₂O₃/Ni₇₇Fe₂₃(5нм)/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм).

4) Отжиг приготовленного образца в магнитном поле при $T_{\text{отж}} = 300 \text{ °C}$ в течение 15 мин. $T_{\text{отж}} = 300 \text{ °C}$, что выше $T_{\text{b}} = 270 \text{ °C}$ для

Al₂O₃/Ni₇₇Fe₂₃(5нм)/Mn(50нм)/Ni₇₇Fe₂₃(30нм)/Ta(5нм).

На Рисунке 11 показана полевая зависимость магнитосопротивления спинового клапана $Al_2O_3/NiFeMn/Co_{90}Fe_{10}(5,5HM)/Cu(3,6HM)/Co_{90}Fe_{10}(5,5HM)/Ta(5HM)$ после

отжига в магнитном поле при температуре 300 °C в течение 15 мин. Магнитосопротивление такой структуры составляет $\Delta R/R_s = 3,8$ %. Это значение существенно выше величины эффекта, полученного в [16], поскольку замена пермаллоя в свободном и пиннингованном слое на Со или сплав Co₉₀Fe₁₀ приводит к увеличению спин-зависимого рассеяния и возрастанию магниторезистивного эффекта в спиновом клапане [6].

Рисунок 11 – Полевая зависимость магнитосопротивления спинового клапана Al₂O₃/NiFeMn/Co₉₀Fe₁₀(5,5нм)/Cu(3,6нм)/Co₉₀Fe₁₀(5,5нм)/Ta(5нм)

Таким образом, разработана технология создания спинового клапана на основе упорядоченной АФ фазы NiFeMn. Создан спиновый клапан с ГМС, превышающим ГМС известных структур, и доказана возможность использования упорядоченной АФ фазы NiFeMn в качестве закрепляющего слоя в спиновом клапане.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

Установлен механизм формирования упорядоченной антиферромагнитной 1. NiFeMn фазы при термомагнитной обработке бислоев марганец/пермаллой. При отжиге марганец проникает в пермаллой по границам кристаллитов, а затем диффундирует от границ в приграничные объемы матрицы. При этом сплошной АФ Формирование слой между слоями не образуется. упорядоченной антиферромагнитной фазы NiFeMn в бислоях Mn/Ni₇₇Fe₂₃ приводит к высокой величине обменного смещения ($H_{\rm ex} = 380$ Э, $J_{\rm ex} = 0.27$ эрг/см²) с температурой Полученные характеристики сопоставимы блокировки $T_{\rm h}$ ≅ 270 °C. с характеристиками сплава IrMn.

2. В результате изменения состава сплава Ni-Fe-Mn, типа подложки, толщин слоёв и технологических режимов установлены оптимальные условия получения слоистых наноструктур с заданными магнитными свойствами (температурой блокировки, полем смещения петли магнитного гистерезиса).

3. Определена минимальная толщина АФ слоя (t_{\min}) (Ni₇₀Fe₃₀)₃₀Mn₇₀ в наноструктуре Ni₈₀Fe₂₀/(Ni₇₀Fe₃₀)₃₀Mn₇₀, необходимая для возникновения смещенной петли магнитного гистерезиса. При увеличении концентрации марганца (x_{Mn}) до 80

ат.% в двухслойной наноструктуре $Ni_{80}Fe_{20}/(Ni_{70}Fe_{30})_{1-x}Mn_x$ увеличивается T_b . Максимальная $T_b = 170$ °C получена для образца с AФ слоем $(Ni_{70}Fe_{30})_{20}Mn_{80}$. Показано, что тип используемой подложки оказывает существенное влияние на магнитные характеристики бислоев $Ni_{80}Fe_{20}/(Ni_{70}Fe_{30})_{30}Mn_{70}$.

4. Показано, что тройной сплав Ni-Fe-Mn может быть использован в качестве закрепляющего слоя в спиновом клапане. Создан оригинальный спиновый клапан с верхним расположением сплава $(Ni_{70}Fe_{30})_{20}Mn_{80}$, с магнитосопротивлением ~ 7% в поле 16 Э и магниторезистивной чувствительностью = 0,75%/Э.

5. Разработан полный технологический цикл приготовления наноструктур спиновый клапан с нижним расположением упорядоченной A Φ фазы NiFeMn, обладающей высокой температурной стабильностью. Магниторезистивный эффект такого типа структур составляет ($\Delta R/R_s$) ~ 4%.

СПИСОК ПУБЛИКАЦИЙ АВТОРА

А1. Блинов И.В. Влияние термомагнитной обработки на магнитные свойства двухслойныхпленок пермаллой/марганец / И.В. Блинов, Т.П. Криницина, С.А. Матвеев, М.А. Миляев, П.Н. Седова, В.В. Попов, В.В. Устинов // Физика металлов и металловедение. — 2011. — V. 112. — Р. 372—377.

А2. Блинов И.В. Исследование наноструктур на основе бислоев Ni₈₀Fe₂₀/(Ni₈₀Fe₂₀)₂₀Mn₈₀ с однонаправленной обменной анизотропией / И.В. Блинов, А.В. Королев, Т.П. Криницина, С.А. Матвеев, М.А. Миляев, В.В. Попов, В.В. Устинов // Физика металлов и металловедение. — 2012. — V. 113. — Р. 791—797.

A3. Blinov I.V. Diffusion Mechanism of Exchange Bias Formation in Permalloy-Manganese Nanostructures at Thermo-Magnetic Treatment / I. V. Blinov, T. P. Krinitsina, S. A. Matveev, M. A. Milyaev, P. N. Sedova, V. V. Popov, V. V. Ustinov // Journal of Nanoscience and Nanotechnology. — 2012. — V. 12. — P. 7562—7565.

А4. Блинов И.В. Исследование возможности использования сплавов системы Ni – Fe – Mn в качестве материала для закрепляющих слоев в спиновых клапанах / И. В. Блинов, А. В. Королев, Т. П. Криницина, С. А. Матвеев, М. А. Миляев, В. В. Попов, В. В. Устинов // Перспективные материалы. — 2013. — V. 4. — P. 5—12.

А5. Блинов И.В. Образование упорядоченной антиферромагнитной фазы NiFeMn в бислоях пермаллой/марганец в процессе термомагнитной обработки / И.В.Блинов, Т.П.Криницина, А.В.Королев, С.А.Матвеев, Н.К.Архипова, М.А.Миляев, В.В.Попов, В.В.Устинов // Физика металлов и металловедение. — 2014. — V. 115. — Р. 360—367.

A6. Blinov I.V. Unidirectional Anisotropy In Nanostructures With Antiferromagnetic NiFeMn Layer / I.V. Blinov, T.P. Krinitsina, M.A. Milyaev, V.V. Popov, V.V. Ustinov // Sol. Stat. Phenomena. — 2015. — V. 233-234. — P. 517—521.

А7. Блинов И.В. Однонаправленная анизотропия в наноструктурах с антиферромагнитным слоем Ni_xFe_yMn_z / Блинов И.В., Криницина Т.П., Миляев М.А., Попов В.В., Проглядо В.В., Устинов В.В. // Международный журнал прикладных и фундаментальных исследований. — 2015. — V. 10. — Р. 769—773.

А8. И.В.Блинов, Исследование структуры и магнитных свойств гетерогенных пленок (Ni₈₀Fe₂₀)_{0,6}Mn_{0,4} / И.В.Блинов, А.В.Королев, Т.П.Криницына, С.А.Матвеев, В.В.Попов, В.А.Цурин // IX Молодежная школа-семинар по проблемам физики

конденсированного состояния вещества (СПФКС-9), 17-23 ноября, 2008, с.73. / Тез.докл.: Екатеринбург: ИФМ УрОРАН

А9. Н.А.Лобанова. Структура и магнитные свойства гетерогенных плёнок (Ni₈₀Fe₂₀)_{1-х}Mn_x / Н.А.Лобанова, И.В.Блинов // 16-я Всероссийская научная конференция студентов-физиков и молодых учёных ВНКСФ-16, Волгоград, 22-29 апреля, 2010: Матер.конф.Екатеринбург-Волгоград:Ассоц.студентов-физиков и молодых учёных.- 308 с.

А10. И.В.Блинов. Однонаправленная обменная анизотропия в бислоях пермаллоймарганец / И.В.Блинов, М.А.Миляев, В.В.Попов // XI Всероссийская молодёжная школа-семинар по проблемам физики конденсированного состояния (СПФКС-XI), Екатеринбург, 15-21 ноября, 2010: Тез.докл.Екатеринбург:УрО РАН.- 38 с.

A11. T.Krinitsina. Diffusion Machanism of the Exchnge Bias Formation in Permalloy-Manganese Nanostructures / T.Krinitsina, I.Blinov, S.Matveev, M.Milyaev, V.Popov, V.Ustinov // Recent Trends in Nanomagnetism,Spintronics and their Applications (RTNSA), Ordizia,Basque Country, 1-4 июня, 2011: Тез.докл.:Ordizia:Org.com.- 139 с.

A12. I.V.Blinov, Exchange Bias Formation Mechanism in (110)Al₂O₃/Py/Mn/Ta Nanostructures / I.V.Blinov, T.P.Krinitsina, S.A.Matveev, M.A.Milyaev, V.V.Popov, V.V.Ustinov // International Conference «TechConnect World», 18-21 июня, 2012 / Ha CD

A13. I.V.Blinov, Magnetic and Magnetoresistive Properties of Nanostructures Based on Bilayers $Ni_{80}Fe_{20}/(Ni_{80}Fe_{20})_{20}Mn_{80}$ I.V.Blinov, T.P.Krinitsina, / S.A.Matveev, M.A.Milyaev, V.V.Popov, V.V.Ustinov // 21-st International Colloquium on Magnetic сентября, Films and Surfaces (ISMFS 2012), 24-28 2012 / Тез.докл./Shanghai, China: Org. Com/.- 133 с.

А14. И.В.Блинов. Формирование однонаправленной анизотропии в бислоях Mn/Ni₇₇Fe₂₃ / И.В.Блинов, Т.П.Криницина, С.А.Матвеев, В.В.Попов // XIII Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (СПФКС-13), Екатеринбург, 7-14 ноября, 2012: Тез.докл./Екатеринбург:ИФМ УрО РАН.- 37 с.8.

A15. I.V.Blinov. Unidirectional anisotropy in nanostructures with antiferromagnetic NiFeMn layer / I.V.Blinov, T.P.Krinitsina, M.A.Milyaev, V.V.Popov, V.V.Ustinov // Moscow International Symposium on Magnetism (MISM-2014), Moscow, 29 июня-3 июля, 2014: Тез.докл.-Moscow, Faculty of Physics M.V.Lomonosov MSU.- 334 c.

А16. И.В.Блинов. Образование упорядоченной антиферромагнитной фазы NiFeMn при термомагнитной обработке бислоёв марганец-пермаллой / И.В.Блинов, Т.П.Криницина, А.В.Королев, М.А.Миляев, В.В.Попов, В.В.Проглядо, В.В.Устинов // Научная сессия ИФМ УрО РАН по итогам 2014 г., Екатеринбург, 30 марта-3 апреля, 2015: Тез.докл.-Екатеринбург:ИФМ УрО РАН.- 106 с.

A17. I.V.Blinov. Formation of ordered antiferromagnetic phase NiFeMn under thermomagnetic treatment of manganese-permalloy bilayers / I.V.Blinov, T.P.Krinitsina, M.A.Milyaev, V.V.Popov, V.V.Proglyado, V.V.Ustinov // 20 International Conference on Magnetism (ISM-2015), Barselona, 5-10 июля, 2015: Тез.докл.-Barcelona,Spain:Org.com..- 35 c.

A18. I.V.Blinov. Applying Ni-Fe-Mn antiferromagnetic alloys for creation of nanoheterostructures with unidirectional magnetic anisotropy / I.V.Blinov, T.P.Krinitsina, M.A.Milyaev, V.V.Popov, V.V.Proglyado, V.V.Ustinov // VI Euro-Asian Symposium

«Trends in Magnetism» (EASTMAG-2016), (Красноярск, 15-19 августа 2016 г.).- 231 с.

A19. I.V.Blinov. Exchange bias in spin valves based on NiFeMn antiferromagnetic alloys / I.V.Blinov, T.P.Krinitsina, M.A.Milyaev, V.V.Popov, V.V. Proglyado, V.V.Ustinov // International conference on Magnetism and Spintronics (Sol-SkyMAG 2016), San Sebastian, Spain, 28-30 июня, 2016 г.

A20. I.V.Blinov. Structure, magnetic and magnetoresistive properties of spin valves based on NiFeMn antiferromagnet / Blinov I.V., Krinitsina T.P., Milyaev M.A., Popov V.V, Proglyado V.V. // Magnetic materials.New technoligies (BICMM-2016), Listvyanka village, Irkutsk region, Russia, 22-26 αβγcτa, 2016 г.: Abstracts of 7th Baikal International Conference, p.182.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. Binasch, G. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange / G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn // Phys. Rev. B. – 1989. – Vol.39. – No.7. – P.4828-4830.

2. Baibich, M. N. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices/ M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas // Phys. Rev. Lett. – 1988. – Vol.61. – No.7. – P.2472-2475.

3. GMR Sensors Data Book, NVE Corporation, Minnesota, 2003, P.82. – http://www.cs.cmu.edu/~sensing-sensors/readings/GMR_sensor_catalog.pdf

4. Parkin, S. S. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr / S. S. P. Parkin, N. More, and K. P. Roche // Phys.Rev. Lett. – 1990. – Vol.64. – P.2304-2307.

5. Dieny, B. Giant magnetoresistance in soft ferromagnetic multilayers / B. Dieny , V.S. Speriosu, S.S.P. Parkin, B.A. Gurney, D.R Wilhoit, D. Mauri // Phys.Rev.B. – 1991. – Vol.43. – No.1. – P.1297-1300.

6. Coehoorn, R. Giant Magnetoresistance and Magnetic Interactions in Exchange-Biased Spin-Valves, in: K.H.J. Buschow (Ed.), Handbook of magnetic materials, – V.15. – Elsevier B.V., Amsterdam, 2003, P.1 – 199.

7. Nogués, J. Exchange bias / J. Nogues, I. K. Schuller // J. Magn. Magn. Mat. – 1999. – Vol.192. – P.203-232.

8. Freitas, P.P. Magnetoresistive sensors / P.P. Freitas, R. Ferreira, S. Cardoso, F. Cardoso, // J. Phys.: Condens. Matt. – 2007. – Vol.19. – No.16. – P.165221-1–21.

9. Меньшиков, А.З. Аморфный магнетизм в железоникельмарганцевых сплавах / А.З. Меньшиков, В.А. Казанцев, Н.Н. // Письма в ЖЭТФ. – 1976. – Т.23. – № 1. – С.6-10.

10. Глазер, А.А. Температурная зависимость магнитных свойств тонких плёнок пермаллой-марганец с обменной анизотропией / А.А. Глазер, А.П. Потапов, Р.П. Тагиров, Л.Д. Уряшева, Я.С. Шур // ФММ. – 1967. – Т.ХХХ1. – №5. – С.735-738.

11. Jungblut, R. Orientational dependence of the exchange biasing in molecular-beam-epitaxy-grown $Ni_{80}Fe_{20}/Fe_{50}Mn_{50}$ bilayers (invited) / R. Jungblut, R. Coehoorn, M. T. Johnson, J. aan de Stegge and A. Reinders // J. Appl. Phys. – 1994. – Vol.75. – No.10. – P.6659-6664.

12. Mauri, D. Novel method for determining the anisotropy constant of MnFe in a NiFe/MnFe sandwich / D.Mauri, E. Kay, D. Scholl, J.K. Howard // J. Appl. Phys. – 1987. Vol.62. – No.7. – P.2929-2932.

13. O'Grady, K. A new paradigm for exchange bias in polycrystalline thin films / K. O'Grady, L.E Fernandez-Outon, G Vallejo-Fernandez // J. Magn. Magn. Mater. – 2010. – Vol.332. – P.883-899.

14. Choe, G. Surface roughness effects on magnetoresistive and magneticproperties of NiFe thin films / G. Choe, M. Steinback // J. Appl. Phys. – 1999. – Vol.85. – No.8. – P.5777-5779.

15. Mehrer, H., Diffusion in Solid Metals and Alloys, Landolt-Börnstein, New Series, Group III,– Vol.26, Springer, Berlin, 1990, P.747.

16. Свалов, А.В. Получение и исследование спин-вентильных структур на основе пленок пермаллоя // А.В. Свалов, В.О. Васьковский, Ю.М. Ярмошенко // ФММ. – 1995. – Т.79. – № 3. – С.53-57.

Отпечатано на Ризографе ИФМ УрО РАН тир. 100 зак. № 51 Объем 1 печ. л. Формат 60х84 1/16 620990, г. Екатеринбург, ул. С. Ковалевской, 18